A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.
The sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.
When the drawdown pressure amounts to a value below the dew point pressure, a minor droplet of condensate is shaped and accumulated in the close area of wellbore. As the accumulation happens, the saturation of the liquid will grow and a reduction in gas relative permeability will happen, therefore it will affect the productivity. Generally, condensate baking problem in gas wells is being deliberated and studied and numerous techniques have been suggested to solve the problem. The studying of condensate banking dynamics is essential to evaluate the productivity and behavior of the wells of the gas fields.
The catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreThis study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show MoreIndustrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r
... Show MoreAbstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste
... Show MoreIn order to reduce hydrostatic pressure in oil wells and produce oil from dead oil wells, laboratory rig was constructed, by injecting LPG through pipe containing mixture of two to one part of East Baghdad crude oil and water. The used pressure of injection was 2.0 bar, which results the hydrostatic pressure reduction around 246 to 222 mbar and flow rate of 34.5 liter/hr fluid (oil-water), at 220 cm injection depth. Effects of other operating parameters were also studied on the behavior of two phase flow and on the production of oil from dead oil wells.
This article reviews the technical applicability of nanofiltration membrane process for the removal of nickel, lead, and copper ions from industrial wastewater.
Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50, 100, 150 and 200 ppm), under different pressures (1, 2, 3 and 4 bar), temperatures (10, 20, 30 and 40 oC), pH (2, 3, 4, 5 and 5.5), and flow rates (1, 2, 3 and 4 L/hr), were prepared and subjected treated by NF systems in the laboratory. Suitable NF membrane was chosen after testing a number of NF membranes (University of Technology-Baghdad), in terms of production and removal. NF system was capable of removing more than (85%, 78%, and 66% for Ni(II
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show More