A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.
Visual analytics becomes an important approach for discovering patterns in big data. As visualization struggles from high dimensionality of data, issues like concept hierarchy on each dimension add more difficulty and make visualization a prohibitive task. Data cube offers multi-perspective aggregated views of large data sets and has important applications in business and many other areas. It has high dimensionality, concept hierarchy, vast number of cells, and comes with special exploration operations such as roll-up, drill-down, slicing and dicing. All these issues make data cubes very difficult to visually explore. Most existing approaches visualize a data cube in 2D space and require preprocessing steps. In this paper, we propose a visu
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Huge yearly investments were made by organizations for the development and maintenance. However, it has been reported that most of the IT projects fails as it is delayed, over budget and discontinued quality. A systematic literature review (SLR) was conducted to identify the critical success factors (CSFs) for the IT projects. Nine (9) CSFs was identified from the SLR. An online survey was conducted among 103 respondents from developers and IT managers. The data was analyzed using the Statistical Package for Social Science (SPSS 22). The findings showed that the highest CSFs of IT projects is commitment and motivation. Project monitoring was found the lowest score ranked by respondents.
Hydroponics is the cultivation of plants by utilizing water without using soil which emphasizes the fulfillment of the nutritional needs of plants. This research has introduced smart hydroponic system that enables regular monitoring of every aspect to maintain the pH values, water, temperature, and soil. Nevertheless, there is a lack of knowledge that can systematically represent the current research. The proposed study suggests a systematic literature review of smart hydroponics system to overcome this limitation. This systematic literature review will assist practitioners draw on existing literature and propose new solutions based on available knowledge in the smart hydroponic system. The outcomes of this paper can assist future r
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreThis paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show More