Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support systems that significantly reduce the cost involved when moving between two locations. Therefore, in this paper, an advanced decision support system is built for identifying the best route between two locations according to various criteria such as distance, travel time, the safety of the road, and other features. The proposed model includes several stages; Google Maps downloading, preprocessing, integrating with the database, and identifying the best route by utilizing advanced algorithms of artificial intelligence. Furthermore, the Open Street Maps (OSM) database is utilized in this model and implemented using the Quantum Geographic Information Systems (QGIS) platform. One of the main merits of this model is to be faster by removing the influence of non-processed data like null values and unlinked roads on offline google maps levels. The outcomes of this proposed model display the best route which connects the source with the destination, and a table including the entire information for this route.
In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.
RNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce
... Show MoreThis paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.
In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.
Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreThe Fatimids were arguing with the Abbasids in everything, even in the causes of civilization, and the Islamic moderization had matured,
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreLeap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
... Show MoreIn this study, field results data were conducted, implemented in 64 biofilm reactors to analyses extract organic matter nutrients from wastewater through a laboratory level nutrient removal process, biofilm layer moving process using anaerobic aerobic units. The kinetic layer biofilm reactors were continuously operating in Turbo 4BIO for BOD COD with nitrogen phosphorous. The Barakia plant is designed to serve 200,000 resident works on biological treatment through merge two process (activated sludge process, moving bed bio reactio MBBR) with an average wastewater flow of 50,000 m3/day the data were collected annually from 2017-2020. The water samples were analysis in the central labor
The main challenge of military tactical communication systems is the accessibility of relevant information on the particular operating environment required for the determination of the waveform's ideal use. The existing propagation model focuses mainly on broadcasting and commercial wireless communication with a highs transceiver antenna that is not suitable for numerous military tactical communication systems. This paper presents a study of the path loss model related to radio propagation profile within the suburban in Kuala Lumpur. The experimental path loss modeling for VHF propagation was collected from various suburban settings for the 30-88 MHz frequency range. This experiment was highly affected by ecological factors and existing
... Show MoreIn this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.