Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received signal strength (RSS) measurements simulated using Wireless InSite (WI) software were considered in the test case study by comparing the results collected from WI with the present wireless simulated physical AP deployment of the targeted building - Computer Science Department at University of Baghdad. The performance evaluation of WOAIP shows an increase in terms of AP placement and optimization distinguished in order to increase the wireless coverage ratio to 92.93% compared to 58.5% of present AP coverage (or 24.5% coverage enhancement on average).
This work consists of a numerical simulation to predict the velocity and temperature distributions, and an experimental work to visualize the air flow in a room model. The numerical work is based on non-isothermal, incompressible, three dimensional, k turbulence model, and solved using a computational fluid dynamic (CFD) approach, involving finite volume technique to solve continuity, momentum and energy equations, that governs the room’s turbulent flow domain. The experimental study was performed using (1/5) scaled room model of the actual dimensions of the room to simulate room air flow and visualize the flow pattern using smoke generated from burnt herbs and collected in a smoke generator to delivered through
... Show MoreAbstract:
The internal audit is considered the safety valve for senior management in all institutions. It aims to protect property, and raise the efficiency and effectiveness of the administrative performance, by following up on compliance with laws and instructions and the application of regulations in a way that increases the administrative performance of the department. The internal audit is possible to determine Weaknesses or imbalances in the administrative performance. To achieve this goal, an analytical descriptive methodology was adopted. The Baghdad Health Department / Al-Rosana was considered as society for this s
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to nd the best bacteria to remove kerosene from soil. The acve bacteria are isolated for kerosene degradaon process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradaon which is 88.5%. The opmum condions of kerosene degradaon by Klebsiella pneumonia sp. are pH5, 48hr incubaon period, 35°C temperature and 10000ppm the best kerosene concentraon. The results 10000ppm showed that the maximum kerosene degradaon can reach 99.58% aer 48 h of incubaon. Higher Kerosene degradaon which was 99.83% was obtained at pH5. Kerosene degradaon was found
... Show MoreThis study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show More