The technological development in the field of information and communication has been accompanied by the emergence of security challenges related to the transmission of information. Encryption is a good solution. An encryption process is one of the traditional methods to protect the plain text, by converting it into inarticulate form. Encryption implemented can be occurred by using some substitute techniques, shifting techniques, or mathematical operations. This paper proposed a method with two branches to encrypt text. The first branch is a new mathematical model to create and exchange keys, the proposed key exchange method is the development of Diffie-Hellman. It is a new mathematical operations model to exchange keys based on prime numbers and the possibility of using integer numbers. While the second branch of the proposal is the multi-key encryption algorithm. The current algorithm provides the ability to use more than two keys. Keys can be any kind of integer number (at least the last key is a prime number), not necessarily to be of the same length. The Encryption process is based on converting the text characters to suggested integer numbers, and these numbers are converted to other numbers by using a multilevel mathematical model many times (a multilevel process depending on the number of keys used), while the decryption process is a one-level process using just one key as the main key, while the other keys used as secondary keys. The messages are encoded before encryption (coded by ASCII or any suggested system). The algorithm can use an unlimited number of keys with a very large size (more than 7500 bytes), at least one of them a prime number. Exponentiation is also used for keys to increase complexity. The experiments proved the robustness of the key exchange protocol and the encryption algorithm in addition to the security. Comparing the suggested method with other methods ensures that the suggested method is more secure and flexible and easy to implement.
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreAstronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
The hydroisomerization of n-decane was studied on SAPO-11 catalyst. Catalyst of 0.25wt.%Pt/SAPO-11 was prepared locally and used in the present work. The hydroconversion performed in a continuous fixed-bed laboratory reaction unit. Experiments of n-decane isomerization were performed in a temperature range of 200 to 275°C,LHSV range of 0.5-2 h-1, and hydrogen to decane mole ratio of 2.1-8.2. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV , the maximum conversion 56.77 % was achieved at temperature 275°C and LHSV of 0.5 h-1. The kinetic of n-decane isomerization was also studied and the reaction was first order. The kinetic analysis also showed that the
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreThe characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show MoreThis paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste
Many studies and researchers have reported significant evidence that some physical properties of water can be changed as it passes through a magnetic field that can improve water use. This can have a promising potential for applications, especially in the fields of irrigation and drainage. In this research, magnetized water was used to leach salt-affected sandy loam soil. A test rig was designed and constructed to investigate the effects of magnetized water on leaching soil. The rig consists of a magnetization device that can provide variable intensity. Water was supplied from a constant head reservoir to the magnetization device then to the soils that were placed in plastic columns. Five different magnetic intensi
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show More|
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |