Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.
Steganography involves concealing information by embedding data within cover media and it can be categorized into two main domains: spatial and frequency. This paper presents two distinct methods. The first is operating in the spatial domain which utilizes the least significant bits (LSBs) to conceal a secret message. The second method is the functioning in the frequency domain which hides the secret message within the LSBs of the middle-frequency band of the discrete cosine transform (DCT) coefficients. These methods enhance obfuscation by utilizing two layers of randomness: random pixel embedding and random bit embedding within each pixel. Unlike other available methods that embed data in sequential order with a fixed amount.
... Show MoreTo determine the seroprevalence of hepatitis B markers in chronic hepatitis B patients, 75 patients with chronic hepatitis B virus of ages (8-70) years have been investigated and compared with 50 apparently healthy individuals. All the studied groups were carried out to measure (HBsAg), (HBsAb), (HBeAg), (HBeAb), and (Total HBcAb) by Enzyme linked immunosorbent assay (ELISA) technique. The percentage distribution of HBsAg was (86.67%) and HBsAb was (1.33%) in sera of CHB patients and there were a highly significant differences (P<0.01) when compared between studied groups, while, the percentage distribution of HBeAg was (22.67%) in sera of CHB patients and the significant represent the difference in distribution of HBeAg as infection but no
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreMetaheuristic is one of the most well-known fields of research used to find optimum solutions for non-deterministic polynomial hard (NP-hard) problems, for which it is difficult to find an optimal solution in a polynomial time. This paper introduces the metaheuristic-based algorithms and their classifications and non-deterministic polynomial hard problems. It also compares the performance of two metaheuristic-based algorithms (Elephant Herding Optimization algorithm and Tabu Search) to solve the Traveling Salesman Problem (TSP), which is one of the most known non-deterministic polynomial hard problems and widely used in the performance evaluations for different metaheuristics-based optimization algorithms. The experimental results of Ele
... Show MoreIn this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreIn the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MoreIn this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point osculatory interpolation. The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems. A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects
... Show MoreThis paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show More