In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor methods. After experimental results, it was determined that out of 71 tested Iraqi tourism companies, 28% from these companies have very good assessment, 26% from these companies have good assessment, 31% from these companies have medium assessment, 4% from these companies have acceptance assessment and 11% from these companies have bad assessment. These results helped the companies to improve their work and programs responding sufficiently and quickly to customer demands.
The main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show Moreمن الضروري اجراء تحليل الحساسية للمشاريع الاستثمارية التي يتبناها القطاع العام أو الخاص وذلك لسببين ، الاول هو تضمين عامل المخاطرة واللاتاكد عند تقييم المشروع من الناحية الاقتصادية ، حيث لابد من يكون نسبة مخاطرة وعدم تاكد عند تقييم أي مشروع لمجابهة احداث المستقبل الغير متوقعة ، الثاني المنافسة الشديدة بين المنتجات المحلية والمستوردة ، حيث ان تحليل الحساسية يعطينا صورة عن مدى حساسية القيمة الحالية
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe problem of independent motion control of mobile robot (МR) in conditions when unforeseen changes of conditions of interaction of wheels with a surface are considered. An example of such changes can be sudden entrance МR a slippery surface. The deployment of an autonomous unmanned ground vehicle for field applications provides the means by which the risk to personnel can be minimized and operational capabilities improved. In rough terrain, it is critical for mobile robots to maintain good wheel traction. Wheel slip could cause the rover to lose control and become trapped. This paper describes the application of fuzzy control to a feedback system within slippery environment. The study is conducted on an example of М
... Show MoreSimplification of new fashion design methods
In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
The synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific
... Show MoreIn this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.