In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor methods. After experimental results, it was determined that out of 71 tested Iraqi tourism companies, 28% from these companies have very good assessment, 26% from these companies have good assessment, 31% from these companies have medium assessment, 4% from these companies have acceptance assessment and 11% from these companies have bad assessment. These results helped the companies to improve their work and programs responding sufficiently and quickly to customer demands.
The research aimed to study the financial markets liquidity and returns of common stocks , Take the research the theoretical concepts associated with each of the liquidity of financial markets and returns of common stocks , As well as the use of mathematical methods in the practical side to measure market liquidity and Stocks Return, the community of research in listed companies in Iraqi stock exchange that have been trading on its stock and number 85 joint-stock company, The research was based to one premise, there is a statistically significant effect for the liquidity of the Iraqi stock exchange on returns of common stocks to traded companies in which , Using th
... Show More