In this study, an analysis of the synoptic characteristics, causes and mechanisms of Kahlaa tornado event was carried out. This tornado occurred on 10:30 UTC (1:30 pm Iraq Local Time) on 14 April 2016 to the north of Kahlaa town in Maysan governorate. We analyzed surface and upper charts, weather conditions, the damage indices, the dynamical features and the instability of the tornado. The analysis showed that there was a low pressure system which was an extension of the Monsoon low in addition to a supercell thunderstorm and a jet stream aloft. The cold trough and high relative vorticity at 500 hPa level, the humid warm wind blowing from the south and the dry cold wind from the north contributed to the initiation of the tornado. According to the damage amount, Kahlaa tornado can be classified as EF2 degree (considerable) on Enhanced Fujita scale. Three indices were calculated to estimate the instability of the tornado. The values of the convective available potential energy (CAPE), K-index, and lifted index were (≥2500 J/kg), (35.3 oC), and (-7), respectively. All these indices confirmed the instability required to form severe thunderstorm essential to tornado formation. Although the forecasting of tornadoes occurrence is difficult, there would be indications that may lead to expect of occurrence. These may include the availability of moisture, heat, and significant wind direction changes with altitude. However, the vital factors were the existence of high instability and a supercell thunderstorm.
The Hubble telescope is characterized by the accuracy of the image formed in it, as a result of the fact that the surrounding environment is free of optical pollutants. Such as atmospheric gases and dust, in addition to light pollution emanating from industrial and natural light sources on the earth's surface. The Hubble telescope has a relatively large objective lens that provides appropriate light to enter the telescope to get a good image. Because of the nature of astronomical observation, which requires sufficient light intensity emanating from celestial objects (galaxies, stars, planets, etc.). The Hubble telescope is classified as type of the Cassegrain reflecting telescopes, which gives it the advantage of eliminating chromat
... Show MoreThis work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreA partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.
Rapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show More