Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breathing difficulty) used to diagnose the person being infected by COVID-19 virus or not. Secondly, this approach divides the infected peoples into four classes, based on their immune system risk level (very high degree, high degree, mild degree, and normal), and using two indices of age and current health status like diabetes, heart disorders, or hypertension. Where, these people are graded and expected to comply with their class regulations. There are six important COVID-19 virus infections of different classes that should receive immediate health care to save their lives. When the test is positive, the patient age is considered to choose one of the six classifications depending on the patient symptoms to provide him the suitable care as one of the four types of suggested treatment protocol of COVID-19 virus infection in COVID-19 DSS application. Finally, a report of all information about any classification case of COVID-19 infection is printed where this report includes the status of patient (infection level) and the prevention protocol. Later, the program sends the report to the control centre (medical expert) containing the information. In this paper, it was suggested the use of C4.5 Algorithm for decision tree.
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreIn this paper, a new modification was proposed to enhance the security level in the Blowfish algorithm by increasing the difficulty of cracking the original message which will lead to be safe against unauthorized attack. This algorithm is a symmetric variable-length key, 64-bit block cipher and it is implemented using gray scale images of different sizes. Instead of using a single key in cipher operation, another key (KEY2) of one byte length was used in the proposed algorithm which has taken place in the Feistel function in the first round both in encryption and decryption processes. In addition, the proposed modified Blowfish algorithm uses five Sboxes instead of four; the additional key (KEY2) is selected randomly from additional Sbox
... Show MoreThis paper introduces a generalization sequence of positive and linear operators of integral type based on two parameters to improve the order of approximation. First, the simultaneous approximation is studied and a Voronovskaja-type asymptotic formula is introduced. Next, an error of the estimation in the simultaneous approximation is found. Finally, a numerical example to approximate a test function and its first derivative of this function is given for some values of the parameters.
This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
Akaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Abstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreA new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show More