Earth’s climate changes rapidly due to the increases in human demands and rapid economic growth. These changes will affect the entire biosphere, mostly in negative ways. Predicting future changes will put us in a better position to minimize their catastrophic effects and to understand how humans can cope with the new changes beforehand. In this research, previous global climate data set observations from 1961-1990 have been used to predict the future climate change scenario for 2010-2039. The data were processed with Idrisi Andes software and the final Köppen-Geiger map was created with ArcGIS software. Based on Köppen climate classification, it was found that areas of Equator, Arid Steppes, and Snow will decrease by 3.9 %, 2.96%, and 0.09%, respectively. While the areas of Warm Temperature and Dessert will increase by 4.5% and 0.75%, respectively. The results of this study provide useful information on future climate Köppen-Geiger maps and areas that will most likely be affected by climate change in the following decades
This study research to Showing The impact of the integration process on the quality of Insurance service and analyze the impact financially to determine whether there is any impact on the quality of the insurance service, in addition to identifying the obstacles that impede the merger between the insurance companies, insurance and the appropriate proposals for its' application and benefit from the benefits achieved.
The importance of The study lies in the fact that it is an important and vital spotlight that is becoming increasingly important in the world to confront the various difficulties and crises that have occurred recently in light of the liberalization of international trade, globalization a
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreObjective(s): The study aims at evaluating pregnancy-related health behaviors for pregnant women, and to identify the association between pregnancy-related health behaviors and their demographic characteristics of pregnant woman’s age, education, employment, residential area and monthly income.
Methodology: A descriptive study is carried out for the period from December 14th, 2020 to June 20th, 2021. This study was conducted through a non-probability (convenience) sample of 150 pregnant women attending, Abo Ghareeb primary health care sector in Abo Ghareeb spend. The sample has been collected by using the instrument to gather data and accomplish the study's objectives. A questionnaire is composed of (29) items and it is divided into
The aim of the study is the assessment of changes in the land cover within Mosul City in the north of Iraq using Geographic Information Systems (GIS) and remote sensing techniques during the period (2014-2018). Satellite images of the Landsat 8 on this period have been selected to classify images in order to measure normalized difference vegetation index (NDVI) to assess land cover changes within Mosul City. The results indicated that the vegetative distribution ratio in 2014 is 4.98% of the total area under study, decreased to 4.77% in 2015 and then decreased to 4.54
Phase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of