Preferred Language
Articles
/
bsj-5517
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
2011 Developments In E-systems Engineering
Enhanced Computation Time for Fast Block Matching Algorithm
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 03 2021
Journal Name
Entropy
Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials
...Show More Authors

Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the

... Show More
View Publication
Scopus (33)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Thu Sep 26 2019
Journal Name
Processes
Fine-Tuning Meta-Heuristic Algorithm for Global Optimization
...Show More Authors

This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Symmetry
Fast Overlapping Block Processing Algorithm for Feature Extraction
...Show More Authors

In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th

... Show More
View Publication
Scopus (18)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
System Identification Algorithm for Systems with Interval Coefficients
...Show More Authors

In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Modified Artificial immune system as Feature Selection
...Show More Authors

Feature selection algorithms play a big role in machine learning applications. There are several feature selection strategies based on metaheuristic algorithms. In this paper a feature selection strategy based on Modified Artificial Immune System (MAIS) has been proposed. The proposed algorithm exploits the advantages of Artificial Immune System AIS to increase the performance and randomization of features. The experimental results based on NSL-KDD dataset, have showed increasing in performance of accuracy compared with other feature selection algorithms (best first search, correlation and information gain).

View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Effect of risk selection policy for life insurance on the prodectivity of iraqi insurance company
...Show More Authors

The life insurance companies need a sound system to use it in selecting Insurable risks so they can avoid or reduce possible losses that may be insured to a minimum levels , But the application within IRAQI INSURANCE  COMPANY reflects that it still depends on a traditional ways in the procedures used to select that risks .

                 This  research represents an attempt to put acceptable suggestions about developing a system for selecting insurable risks which used now by iraqi insurance company by recognizing the risks of life insurance , determining kinds of risks which can difined as normal and upnormal risks , rectification of the

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
The Evaluation of Accuracy Performance in an Enhanced Embedded Feature Selection for Unstructured Text Classification
...Show More Authors

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the te

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
User Quality of Experience (QoE) Satisfaction for Video Content Selection (VCS) Framework in Smartphone Devices
...Show More Authors

Video streaming is widely available nowadays. Moreover, since the pandemic hit all across the globe, many people stayed home and used streaming services for news, education,  and entertainment. However,   when streaming in session, user Quality of Experience (QoE) is unsatisfied with the video content selection while streaming on smartphone devices. Users are often irritated by unpredictable video quality format displays on their smartphone devices. In this paper, we proposed a framework video selection scheme that targets to increase QoE user satisfaction. We used a video content selection algorithm to map the video selection that satisfies the user the most regarding streaming quality. Video Content Selection (VCS) are classified in

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Time and finance optimization model for multiple construction projects using genetic algorithm
...Show More Authors
Abstract<p>Construction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w</p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref