This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
This research include building mathematical models for aggregating planning and shorting planning by using integer programming technique for planning master production scheduling in order to control on the operating production for manufacturing companies to achieve their objectives of increasing the efficiency of utilizing resources and reduce storage and improving customers service through deliver in the actual dates and reducing delays.
In this paper, a general expression formula for the Boubaker scaling (BS) operational matrix of the derivative is constructed. Then it is used to study a new parameterization direct technique for treating calculus of the variation problems approximately. The calculus of variation problems describe several important phenomena in mathematical science. The first step in our suggested method is to express the unknown variables in terms of Boubaker scaling basis functions with unknown coefficients. Secondly, the operational matrix of the derivative together with some important properties of the BS are utilized to achieve a non-linear programming problem in terms of the unknown coefficients. Finally, the unknown parameters are obtaine
... Show MoreBackground: Papillary thyroid carcinoma (PTC) is the commonest thyroid cancer. Cases in category-
5a of Bethesda system (suspicious for papillary carcinoma) are treated by surgical lobectomy followed
by total thyroidectomy if histopathology confirms papillary carcinoma. In order to reduce surgical
procedures to one this was conducted.
Objectives: evaluation of role of immunohistochemistry in pre-operative diagnosis of papillary thyroid
carcinoma on cell blocks.
Materials and Method: Cell blocks were taken from cases labelled category-5a for histopathology and
immunohistochemistry using three markers (CK-19, Thyro-peroxidase, and BRAFv600E mutation).
Results: were highly sensitive, and specific. The use of more tha
In this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.
Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD
... Show MoreThe basic goal of this research is to utilize an analytical method which is called the Modified Iterative Method in order to gain an approximate analytic solution to the Sine-Gordon equation. The suggested method is the amalgamation of the iterative method and a well-known technique, namely the Adomian decomposition method. A method minimizes the computational size, averts round-off errors, transformation and linearization, or takes some restrictive assumptions. Several examples are chosen to show the importance and effectiveness of the proposed method. In addition, a modified iterative method gives faster and easier solutions than other methods. These solutions are accurate and in agreement with the series
... Show MoreIn this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of linear or nonlinear ordinary and partial differential equations.
In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.