This work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanoparticles at 4 vol.%, tensile modules of ZrO2 epoxy nanocomposites increased about 200% for optimal content of ZrO2 nanoparticles at 4 vol.%. SEM images show that the patterns of fractured surfaces of ZrO2 epoxy nanocomposites are different from the pattern of the neat epoxy. The fracture roughness of ZrO2 epoxy nanocomposites increased with the increases of the percentages of ZrO2 nanoparticles, where the increment of fracture roughness about 30% for optimal content of ZrO2 nanoparticles at 4 vol.% can be indicator for the improvement of mechanical properties (tensile strength and modules).
The synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
The current research aims to train students to take benefit of their studies to analyze and taste the artistic works as one of the most important components of the academic structure for students specializing in visual arts; then to activate this during training them the methods of teaching. Consequently, the capabilities of mind maps were employed as a tool that would be through freeing each student to analyze a model of artistic work and think about his analytical principles according to what he knows. Then, a start-up with a new stage revolves around the possibility of transforming this analysis into a teaching style by thinking about how the student would do. The same person who undertook the technical analysis should offer this work
... Show MoreThis research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
This work has been done with using of epoxy resin mixed with Granite powder were weighted by percent volume (5,10,15, and 20)%and then mixed with epoxy polymer to compose polymer composite. Hand lay-up technique is used in fabrication of the composite samples. Hardness test was carried out for the proper samples in both normal condition and after immersion in HCL (1 M and 2 M) solutions for periods ranging up to 10 weeks. After comparing the results between the polymer and their composite, the hardness increased with increasing Granite weight percent, it was found that Hardness were greater for the composites before immersion compared with their values after immersion.
In this research, nanocomposites of poly(methyl methacrylate) (PMMA) and a mixture of nano silica (SiO2) and nano zirconia (ZrO2) were prepared in different weight percentages of the nano fillers to improve some of the properties of PMMA resin to be used as a denture base material. The nano filles were surface modified with a coupling agent and added to the PMMA in different amounts. Impact strength, transverse strength, hardness and roughness were tested for both control and experimental groups. The results indicate that PMMA/silica/zirconia nanocomposites, prepared with 5% by weight of both types of fillers, had a slight increase in impact s
Experimental investigations had been done in this research to demonstrate the effect of carbon fiber and Ceramic fillers contents on the tribological behaviour of (15% volume fraction) carbon-epoxy composite system under varying volume fraction, load, time and sliding distance. The wear resistance were investigated according to ASTM G99-05standard using pin on disc machine to present the composite tribological behaviour. The influence of three ceramic fillers, granite, perlite and calcium carbonate (CaCO3), on the wear of the carbon fabric reinforced epoxy composites under dry sliding conditions has been investigated. The effect of variants in volume fraction, applied load, time and sliding distance on the wear behaviour of po
... Show MorePolyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT
... Show More
