This paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finally, the obtained solutions are graphically analyzed for variations of interesting flow parameters. While the MATHEMATICA package is used to draw the figures velocity components in the plane.
An immunological technique was investigated for the detection of human semen in forensic analysis.This technique included a preparation of anti-human seminal plasma antibodies, by immunizing rabbits with treated human semen. The human semen was treated with an acid to prevent cross reactivity with other human body fluids. The antibody produced was tested against different animal,s seminal fluid samples (dog, goat ,sheep, cow) and human body fluids( saliva, blood , vaginal fluid, ear wax and human semen). It was found that using this developed technique was only selectively responsed with human semen . The prepered kit was evaluated and tested in Forensic laboratory- Ministry of Health. Finally, results were obtained in a c
... Show MoreIn this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
Background: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of
... Show MoreCover crops (CC) improve soil quality, including soil microbial enzymatic activities and soil chemical parameters. Scientific studies conducted in research centers have shown positive effects of CC on soil enzymatic activities; however, studies conducted in farmer fields are lacking in the literature. The objective of this study was to quantify CC effects on soil microbial enzymatic activities (β-glucosidase, β-glucosaminidase, fluorescein diacetate hydrolase, and dehydrogenase) under a corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation. The study was conducted in 2016 and 2018 in Chariton County, Missouri, where CC were first established in 2012. All tested soil enzyme levels were significantly different between 2016 and 2018
... Show MoreAcne scars are one of the most common problems following acne vulgaris. Despite the extensive list of available treatment modalities, their effectiveness depends upon the nature of the scar. Ablative lasers had been used to treat acne scars; one of them is the fractional CO2 laser. The aim of this study is to evaluate the outcome of fractional CO2 laser in the treatment of acne scars. Methods: Since January 2010 to June 2013, using 10600 nm fractional CO2 laser beams, the acne scar of 400 patients, 188 males and 212 females, mean age of 34 years, have been treated and classified according to severity into four grades following Goodman and Baron classification. Each patient underwent 3-5 sessions once monthly. The mean laser exposure time
... Show MoreZnIn2(Se1-xTex)4 (ZIST) chalcopyrite semiconductor thin films at various contents (x = 0.0, 0.2, and 0.4) are deposited on glass and p type silicon (111) substrate to produce heterojunction solar cell by using the thermal evaporation technique at RT where the thickness of 500 nm with a vacuum of 1×10-5 mbar and a deposited rates of 5.1 nm/s. This study focuses on how differing x content effect on the factors affecting the solar cell characteristics of ZIST thin film and n-ZIST/p-Si heterojunction. X-ray diffraction XRD investigation shows that this structure of ZIST film is polycrystalline and tetragonal, with (112) preferred orientation at 2θ ≈ 27.01. Moreover, atomic force microscopy AFM is studying the external morphology of
... Show MoreCobalt substituted nickel copper ferrite samples with general formula Ni0.95-xCoxCu0.05Fe2O4, where (x= 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by solid-state reactions method at 1373 K for 4h. The samples prepared were examined by X-ray diffraction (XRD(, atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR) and Vickers hardness. X-ray diffraction patterns confirm the formation of a single phase of cubic spinel structure in all the prepared samples . XRD analysis showed that the increase in the cobalt concentration causes an increase in the lattice constant, bulk density (ρm) and the x-ray density (ρx), whereas porosity (p) and crystallite size (D) decrease. The Topography of the surface observed
... Show MoreTin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K