A spectrophotometric method has been proposed for the determination of two drugs containing phenol group [phenylephrine hydrochloride (PHP) and salbutamol sulphate (SLB)] in pharmaceutical dosage forms. The method is based on the diazotization reaction of metoclopramide hydrochloride (MCP) and coupling of the diazotized reagent with drugs in alkaline medium to give intense orange colored product (?max at 470 nm for each of PHP and SLB). Variable parameters such as temperature, reaction time and concentration of the reactants have been analyzed and optimized. Under the proposed optimum condition, Beer’s law was obeyed in the concentration range of 1-32 and 1-14 ?g mL-1 for PHP and SLB, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for each of PHP and SLB were 0.60, 0.52 ?g mL-1 and 2.02, 1.72 ?g mL-1, respectively. No interference was observed from common excipients present in pharmaceutical preparations. The good correlation coefficients and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical preparations, which was compared statistically with reference methods by means of t- test and F- test and were found not to differ significantly at 95% confidence level. The procedure was characterized by its simplicity with accuracy and precision.
Introduction: Elite football performance hinges on rapid tactical decision-making under physical and cognitive strain. While peripheral fatigue’s effects on motor output are well documented, the neurophysiological markers of mental fatigue and their impact on in-game decision making remain underexplored. Objective: To determine how EEG-derived central fatigue indices—frontal theta power and the theta/alpha ratio—relate to tactical decision accuracy and speed in elite football players. Methodology: Twenty male national-level footballers (age 22.4 ± 2.1 years; ≥ 5 years’ experience) completed the Yo-Yo Intermittent Recovery Test Level 1 while wearing an 8-channel dry-electrode frontal EEG headset. Frontal theta
... Show MoreA mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described
... Show MoreThe study aimed to analyze the effect of meteorological factors (rainfall rate and temperature) on the change in land use in the marshes of the Al‐Majar Al‐Kabir region in southern Iraq. Satellite images from Landsat 7 for 2012 and Landsat 8 for 2022 were used to monitor changes in the land coverings, the images taken from the Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) sensors of the Landsat satellite. Geometric correction was used to convert images into a format with precise geographic coordinates using ArcMap 10.5. The maximum likelihood classification method was used to examine satellite image data using a supervised approach, and the data were analyzed statistically. We obtained clear images of the area,
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreAdvancements and modernizations introduced into the educational and pedagogical systems have significantly impacted teaching processes and how subjects are presented and explained to students. The focus has shifted to how learners interact with the material they need to learn, providing sufficient opportunities for learning and granting them freedom and self-confidence to achieve learning objectives. The research problem stems from the researcher's experience as a lecturer in the College of Physical Education and Sports Science, particularly in teaching basketball. She observed that some instructors were deficient in using the most effective teaching methods. The researcher formulated her research question based on these observations: "What
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show More