Preferred Language
Articles
/
bsj-537
Removal of Direct 50 Dyes from Aqueous Solution Using Natural Clay and Organoclay Adsorbents
...Show More Authors

In this study, hexadecyltrimethylammonium bromide (HDMAB) - bentonite was synthesized by placing alkylammonium cation onto bentonite. Adsorption of textile dye such as direct Yellow 50 on natural bentonite and HDMAB -bentonite was investigated. The effects of pH, contact time,dosage clay and temperature were investigated experimentally .The Langmuir and Freundlish isotherms equations were applied to the data and values of parameters of these isotherm equations were evaluated. The study indicated that using 0.2 g of HDMAB (hexadecyltrimethylammonium bromide) lead to increase the percentage removal(R%) from 78% for pure bentonite to 99 %. The optimum pH value for the adsorption experiments was found to be pH=3 and therefore all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results.Different thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. The thermodynamic analyses of the dye adsorption on organoclay indicated that the system was endothermic in nature .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 30 2018
Journal Name
Oriental Journal Of Chemistry
Viscosity and Density Studies of Drugs in Aqueous Solution and in Aqueous Threonine Solution at 298.15 K
...Show More Authors

Viscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.

Publication Date
Mon Feb 25 2019
Journal Name
Oriental Journal Of Chemistry
Viscosity and Density Studies of Drugs in Aqueous Solution and in Aqueous Threonine Solution at 298.15 K
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Research In Medical Sciences & Technology
GREEN SYNTHESIS OF SILVER NANOPARTICLE USING GREEN TEA LEAVES EXTRACT FOR REMOVAL CIPROFLOXACIN (CIP) FROM AQUEOUS MEDIA
...Show More Authors

This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Feb 05 2017
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
STUDY THE OPTIMUM CONDITIONS FOR THE REMOVAL OF HEAVY METAL ELEMENTS FROM AQUEOUS SOLUTIONS USING CONTAMINATED BACTERIA Bacillus subtilis LOCALLY ISOLATED: STUDY THE OPTIMUM CONDITIONS FOR THE REMOVAL OF HEAVY METAL ELEMENTS FROM AQUEOUS SOLUTIONS USING CONTAMINATED BACTERIA Bacillus subtilis LOCALLY ISOLATED
...Show More Authors

We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Direct Contact Membrane Distillation for Desalination Brine Solution
...Show More Authors

Desalination is a process where fresh water produces from high salinity solutions, many ways used for this purpose and one of the most important processes is membrane distillation (MD). Direct contact membrane distillation (DCMD) can be considered as the most prominent type from MD types according to ease of design and modus operandi. This work studies the efficiency of using DCMD operation for desalination brine with different concentration (1.75, 3.5, 5 wt. % NaCl). Frame and plate cell was used with flat sheet PTFE hydrophobic type membrane. The study proves that MD is an effective process for desalination brines with feed temperature less than 60˚C especially for feed with low TDS. 37˚C, 47˚C, and 57˚C was feed t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Adsorption of Methyl Violet Dye from Aqueous Solution by Iraqi Bentonite and Surfactant – Modified Iraqi Bentonite
...Show More Authors

Natural bentonite (B) mineral clay was modified by anionic surfactant sodium dodecyl sulfate (SDS) and characterized using different techniques such as: FTIR spectroscopy, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The bentonite and modified bentonite were used as adsorbents for the adsorption of methyl violet (MV) from aqueous solutions. The adsorption study was carried out at different conditions such as: contact time, pH value and adsorbent weight. The adsorption kinetic described by pseudo– first order and pseudo – second order equilibrium experimental data described by Langmuir, Freundlich and Temkin isotherm models. The thermodynamic parameters standard free energy ( ), standard entropy ( ) standa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Adsorption of Cd(II) and Pb(II) Ions from Aqueous Solution by Activated Carbon
...Show More Authors

Heavy metal consider as major environmental pollutants. Many of industrial wastewater effluents contain a wide range of these heavy metals. The adsorption of Cd2+ and Pb2+ metal ions from aqueous solution by activated carbon was studied. The results showed that maximum adsorption capacity occurred at 486.9×10-3 mg/kg for Pb2+ ion and 548.8×10-3 mg/kg for Cd2+ ion. The adsorption in a mixture of the metal ions had a balancing effect on the adsorption capacity of the activated carbon. The adsorption capacity of each metal ion was affected by the presence of other metal ions rather than its presence individually. The study showed the presence of other heavy metals attribute to the reduction in the activated carbon capacity, and the adsorp

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 19 2024
Journal Name
Applied Science And Engineering Progress
Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
...Show More Authors

Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jul 19 2024
Journal Name
Applied Science And Engineering Progress
Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
...Show More Authors

Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported

... Show More
View Publication
Scopus Crossref