Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating optimal timetable schedules with different copies by increasing the probability of giving the best schedule for each stage in the campus with the ability to replace the timetable when needed. The Evolutionary Algorithm (EA) utilized in this paper is the Genetic Algorithm (GA) which is a common multi-solution metaheuristic search based on the evolutionary population that can be applied to solve complex combinatorial problems like timetabling problems. In this work, all inputs: courses, teachers, and time acted by one array to achieve local search and combined this acting of the timetable by using the heuristic crossover to ensure that the essential conditions are not broken. The result of this work is a flexible scheduling system, which shows the diversity of all possible timetables that can be created depending on user conditions and needs.
The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreAbstract :
This present paper sheds the light on dimensions of scheduling the service that includes( the easiness of performing the service, willingness , health factors, psychological sides, family matters ,diminishing the time of waiting that improve performance of nursing process including ( the willingness of performance, the ability to perform the performance , opportunity of performance) . There is genuine problem in the Iraqi hospitals lying into the weakness of nursing staffs , no central decision to define and organize schedules. Thus the researcher has chosen this problem as to be his title . The research come a to develop the nursing service
... Show MoreIn this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreOne of the most important challenges facing project management at present time is to ensure project accomplishment in spite of the specific restrictions like the specific time the financial resources specialized to do the project ; which require an accurate consideration for time and cost . the modern village project (residential building aspect) is one of the great project that ministry of agriculture is trying to do Wasit governorate it is chosen as the work in this project is dilatory for that is being studied in term of some modern mathematical and scientific methods like critical path method (CPM)which is one of the project management and scheduling methods to know the time needed to accomplish residential building pro
... Show MoreCrow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble
... Show MoreThis paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreThis paper focuses on the most important element of scientific research: the research problem which is confined to the concept of concern or concern surrounding the researcher about any event or phenomenon or issue paper and need to be studied and addressed in order to find solutions for them, to influence the most scientific research steps from asking questions and formulating hypotheses, to employ suitable methods and tools to choose the research and sample community, to employ measurement and analysis tools. This problem calls for a great effort by the researcher intellectually or materially to develop solutions.