Preferred Language
Articles
/
bsj-5251
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Al–bahith Al–a'alami
Attitudes of the Iraqi Public towards the Propaganda Logic of Terrorist Organizations
...Show More Authors

                     The research entitled "the attitudes of Iraqi People towards the Logic Propaganda for Terrorist Organization such as Daash Regulation, as-Qaida, and Jabhat al-Nasra". It is a field study on the professors and the students of the College of Mass Media at Baghdad University in 2014.

                      After the global war on terrorism declared on September 11, 2011, the researcher finds it is important to study such subject as it threats the unity and sovereignty of Iraq especially after th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (18)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Automated method for buried object detecting using ground penetrating radar (GPR) survey
...Show More Authors

  Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 27 2020
Journal Name
Journal Of The College Of Education For Women
Textual Analysis of Complex Nominals Translation Errors in Economic Texts
...Show More Authors

The present study has three objectives: 1) to investigate the prevalence of complex nominals in economic discourse represented via the selected business news texts, 2) to shed some light on the most common translation errors made by second year students in the Department of Translation in rendering complex nominals into Arabic, and 3) to detect the possible causes behind such translation errors and suggest some translation tips which might sound helpful to the students of translation to find the most suitable translation equivalent. The present study is based on an empirical survey in which a selective analysis of someeconomic texts represented in business news texts is made. A corpus of 159 complex nominals was selected from seven busin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Role of System Strategic Learning Smart In Sustainability Success of Managing Network e-Business
...Show More Authors

Purpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.

Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.

Methodology:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETECTION OF Staphylococcus aureus CAUSED OF FOOD POISONING IN RED & WHITE MEAT OFFERED IN LOCAL MARKETS: DETECTION OF Staphylococcus aureus CAUSED OF FOOD POISONING IN RED & WHITE MEAT OFFERED IN LOCAL MARKETS
...Show More Authors

This study was conducted to investigate the presence of Staphylococcus aureus in the red and white meat available in local markets. They were selected ten samples of red and white meat randomly (Iraq, Saudi Arabia, Turkey, and Brazil) from different markets in Baghdad, and the results of reading the nutrition facts of media indication card showed that all models confirm to the Iraqi standard quality in terms of scanning all data of the media indication card, except for the birds of Bayader, where the date of expire & production date of the product was not mentioned. Also, the results of the study showed that there is no Staphylococcus aureus in local red and white meat as well as imported.

View Publication Preview PDF
Publication Date
Fri Jul 30 2021
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm
...Show More Authors

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (59)
Crossref (31)
Scopus Clarivate Crossref