Preferred Language
Articles
/
bsj-5245
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim of this unfortunate mental disorder. The data is collected from Twitter, one of the popular Social Networking Sites (SNS). The Tweets are then pre-processed and annotated manually. Finally, various machine learning and ensemble methods are used to automatically distinguish Suicidal and Non-Suicidal tweets. This experimental study will help the researchers to know and understand how SNS are used by the people to express their distress related feelings and emotions. The study further confirmed that it is possible to analyse and differentiate these tweets using human coding and then replicate the accuracy by machine classification. However, the power of prediction for detecting genuine suicidality is not confirmed yet, and this study does not directly communicate and intervene the people having suicidal behaviour.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
Scopus (7)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Ecological Engineering
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
Scopus (8)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Sun Mar 19 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effect of Using the Generative Learning Model on the Achievement of First-Grade Intermediate Students of Chemical Concepts in Science

Abstract

The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 15 2020
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Optimizing Linear Models via Sinusoidal Transformation for Boosted Machine Learning in Medicine: Sinusoidal Optimization of Linear Models

Background: Machine learning relies on a hybrid of analytics, including regression analyses. There have been no attempts to deploy a sinusoidal transformation of data to enhance linear regression models.
Objectives:
We aim to optimize linear models by implementing sinusoidal transformation to minimize the sum of squared error.
Methods:
We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to generate 30 trials of linear regression models, and each has 1,000 observations. We utilized SPSS linear regression, Wilcoxon signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of the optimization model. Results: The sinusoidal

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials & Continua
Scopus (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
The impact of organizational learning capabilities on the promotion of knowledge capital Applied research at Wasit University

Abstract

      The current research aims at identifying any of the dimensions of organizational learning abilities that are more influential in the knowledge capital of the university and the extent to which they can be applied effectively at Wasit University. The current research dealt with organizational learning abilities as an explanatory variable in four dimensions (Experimentation and openness, sharing and transfer of knowledge, dialogue, interaction with the external environment ), and knowledge capital as a transient variable, with four dimensions (human capital, structural capital, client capital, operational capital). The problem of research is the following questio

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Nano Fluid Detection for HPHE System Using Different Lasers

Among the different passive techniques heat pipe heat exchanger (HPHE) seems to be the most effective one for energy saving in heating ventilation and air conditioning system (HVAC). The applications for nanofluids with high conductivity are favorable to increase the thermal performance in HPHE. Even though the nanofluid has the higher heat conduction coefficient that dispels more heat theoretically but the higher concentration will make clustering .Clustering is a problem that must be solved before nanofluids can be considered for long-term practical uses. Results showed that the maximum value of relative power is 0.13 mW at nanofluid compared with other concentrations due to the low density of nanofluid at this concentration. For highe

... Show More
View Publication Preview PDF