The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these calculations showed that the effect of increasing the values of the laser pulse power (25-250kW) led to decrease the absorption coefficient values by 58.3% and increase the electron temperature by 50.0% at duration pulse time 0.5ns and electron density ratio 0.1. Furthermore, the ratio of electron density increasing and pulse duration time led to increase the higher values of the electron temperature. The results of the calculations showed the effect of the laser power, the percentage of electron density, and the pulse duration for improving the electron temperature. It is possible to control the temperature of the electrons with one of the plasma parameters or the laser beam used, and that it gives a clear indication of researchers in this field to choose the optimal wavelength of the laser beam and electron density ratios for the plasma.
With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreIn this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
Toxic dyes are commonly discharged into waste waters and dyes are extensively used in the textile industry so it is necessary to find out efficient and eco-friendly method for treating waste waters resulting from industrial effluences. To achieve this aim the fungus Trichoderma sp. is employed into two lines: first line was self – immobilized fungal pellets in (Czapek – Dox medium) to adsorbs two dyes crystal violet, congo red by concentrations 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 mg/L to both dyes, PH 2, room temperature with shaker in ( hrs.2,hrs.4,hrs.24) , by Uv- Visible spectrum . the removal efficiency of 0.05 mg/L crystal violet by Trichoderma sp was 96%. but there was no remova
... Show MoreAs COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
The present study aims at assessing the status of heavy metals such as nickel, cadmium and lead to pollute some areas of Baghdad city. In this study the spectral absorption device and the program ArcGIS 10.2 will using. The soil samples were taken from five different locations in Baghdad, including Ameriya, Kadhimiya, Palestine Street, Jadiriyah and Taji for the 5cm depth layer on both sides of the road. This work on soil samples has been completed in two :phases 1 - Preparation of samples: For the purpose of converting solid material into a extract containing elements in the form of single ions can be estimated by the device 2-Determination of elements: Samples prepared to the device
One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to
... Show MoreAutomatic speaker recognition may achieve remarkable performance in matched training and test conditions. Conversely, results drop significantly in incompatible noisy conditions. Furthermore, feature extraction significantly affects performance. Mel-frequency cepstral coefficients MFCCs are most commonly used in this field of study. The literature has reported that the conditions for training and testing are highly correlated. Taken together, these facts support strong recommendations for using MFCC features in similar environmental conditions (train/test) for speaker recognition. However, with noise and reverberation present, MFCC performance is not reliable. To address this, we propose a new feature 'entrocy' for accurate and robu
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show More