A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MorePhotocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal acti
... Show MoreWe have investigated the photoemission and electronic properties at the PTCDI molecules interface on TiO2 and ZnO semiconductor by means of charge transition. A simple donor acceptor scenario used to calculate the rate for electron transfer of delocalized electronics in a non-degenerately TiO2 and ZnO electrodes to redox localized acceptors in an electrolytic. The dependent of electronic transition rate on the potential at contact of PTCDI with TiO2 and ZnO semiconductors, it has been discussion using TiO2 and ZnO electrodes in aqueous solutions. The charge transfer rate is determining by the overlapping electronic coupling to the TiO2 and ZnO electrodes, the transition energy, potential and polarity media within the theoretical scenario of
... Show MoreThe design, construction and investigation of experimental study of two compound parabolic concentrators (CPCs) with tubular absorber have been presented. The performance of CPCs have been evaluated by using outdoor experimental measurements including the instantaneous thermal efficiency. The two CPCs are tested instantly by holding them on a common structure. Many tests are conducted in the present work by truncating one of them in three different levels. For each truncation the acceptance half angle (θc) was changed. Geometrically, the acceptance half angle for standard CPC is (26o). For the truncation levels for the other CPC 1, 2 and 3 the acceptance half angle were 20o, 26o and 5
... Show MoreSolar activity monitoring is important in our life because of its direct or indirect influence on our life, not only on ionospheric communications. To study solar activity, researchers need measuring and monitoring instruments, these instruments are mostly expensive and are not available in all universities. In this paper, a very low frequency radio receiver had been designed and implemented with components available in most markets to support the researchers, college students, and radio astronomy amateurs with a minimum input voltage less than 100µV, an output voltage less than 135 m V with no distortion and an overall gain of 34dB. A comparison had been done between two circuit structures using a workbench software program and experim
... Show MoreThe effects of solar radiation pressure at several satellite (near Earth orbit satellite, low Earth orbit satellite, medium Earth orbit satellite and high Earth orbit satellite ) have been investigated. Computer simulation of the equation of motion with perturbations using step-by-step integration (Cowell's method) designed by matlab a 7.4 where using Jacobian matrix method to increase the accuracy of result.
In this paper thermo-hydrodynamic characteristics were investigated experimentally for a new type shell-helical coiled tube heat exchanger used as a storage tank of closed loop solar water heater system. Triple concentric helical coils were made of copper tubes of (12.5mm OD and 10mm ID) with coils diameter of (207, 152.2, 97mm) for outer, middle and inner coils respectively. The experiments were carried out during a clear sky days of (March and April 2012). The parameters studied in this work are: history of average temperature of shell side of the storage tank, collector heat gain, heat rejected from coils to shell side of the storage tank, collector efficiency, thermal effectiveness of the heat exchanger (storage tank), and pressure d
... Show MoreArrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.
There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to so
... Show More