Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus, the exact way by which the network will hide the information is unable to be known to anyone who does not have the weights. The second goal is to increase hiding capacity, which has been achieved by using CNN as a strategy to make decisions to determine the best areas that are redundant and, as a result, gain more size to be hidden. Furthermore, In the proposed model, CNN is concurrently trained to generate the revealing and hiding processes, and it is designed to work as a pair mainly. This model has a good strategy for the patterns of images, which assists to make decisions to determine which is the parts of the cover image should be redundant, as well as more pixels are hidden there. The CNN implementation can be done by using Keras, along with tensor flow backend. In addition, random RGB images from the "ImageNet dataset" have been used for training the proposed model (About 45000 images of size (256x256)). The proposed model has been trained by CNN using random images taken from the database of ImageNet and can work on images taken from a wide range of sources. By saving space on an image by removing redundant areas, the quantity of hidden data can be raised (improve capacity). Since the weights and model architecture are randomized, the actual method in which the network will hide the data can't be known to anyone who does not have the weights. Furthermore, additional block-shuffling is incorporated as an encryption method to improved security; also, the image enhancement methods are used to improving the output quality. From results, the proposed method has achieved high-security level, high embedding capacity. In addition, the result approves that the system achieves good results in visibility and attacks, in which the proposed method successfully tricks observer and the steganalysis program.
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreIn this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreBoth the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th
... Show MoreAs one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreThe current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThis paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m
... Show More