Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus, the exact way by which the network will hide the information is unable to be known to anyone who does not have the weights. The second goal is to increase hiding capacity, which has been achieved by using CNN as a strategy to make decisions to determine the best areas that are redundant and, as a result, gain more size to be hidden. Furthermore, In the proposed model, CNN is concurrently trained to generate the revealing and hiding processes, and it is designed to work as a pair mainly. This model has a good strategy for the patterns of images, which assists to make decisions to determine which is the parts of the cover image should be redundant, as well as more pixels are hidden there. The CNN implementation can be done by using Keras, along with tensor flow backend. In addition, random RGB images from the "ImageNet dataset" have been used for training the proposed model (About 45000 images of size (256x256)). The proposed model has been trained by CNN using random images taken from the database of ImageNet and can work on images taken from a wide range of sources. By saving space on an image by removing redundant areas, the quantity of hidden data can be raised (improve capacity). Since the weights and model architecture are randomized, the actual method in which the network will hide the data can't be known to anyone who does not have the weights. Furthermore, additional block-shuffling is incorporated as an encryption method to improved security; also, the image enhancement methods are used to improving the output quality. From results, the proposed method has achieved high-security level, high embedding capacity. In addition, the result approves that the system achieves good results in visibility and attacks, in which the proposed method successfully tricks observer and the steganalysis program.
In this paper a stirred-bed performed of the copper catalyzed synthesis of ethylchlorosilanes from silicon and ethyl chloride was described. A Si-catalyst mixture prepared by reaction of CuCl and Si was employed. The compositions of products were mainly ethyltrichlorosilane, diethyldichlorosilane, and ethyldichlorosilane and mainly depended on the extent of Cu in the mixture and the reaction temperature. A promoting effect on the extent of adsorption was observed on the addition of certain additives. The kinetic data revealed the direct depended of the reaction rate on C2H5Cl pressure.
In this study three inorganic nano additives, namely; CaCO3, Al2O3 and SiO2 were used to prepare nanocomposites of unsaturated polyester in order to modify their mechanical properties, i.e. tensile strength, elongation, impact and hardness. The results indicated that all the three additives were effective to improve the mechanical properties up to 4% by weight. The effectiveness of them follows the order : CaCO3 > Al2O3 > SiO2 This is due to their particle size in which CaCO3 (13nm), Al2O3 (20-30nm) and SiO2 (15-20nm).
The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the additi
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
This study aims to use claystone beds exposed in the Injana Formation (Late Miocene) at Karbala-Najaf plateau, middle of Iraq for the manufacturing of perforated and ordinary bricks. The claystone samples were assessed as an alternative material of the recent sediments, which are preferred to remain as agricultural land. The claystones are sandy mud composing of 29.1 - 39.1% clay, 37.2 - 54.8% silt and 14.1-26.8% sand. They consist of kaolinite, illite, chlorite, palygorskite, and montmorillonite with a lot of quartz, calcite, dolomite, gypsum and feldspar. Claystone samples were characterized by linear shrinkage 0.01 - 0.1%, volume shrinkage 0.1 - 0.9%, bulk density 1.2 - 2.11gm/cm3 (1.68 g / cm3 average), and the efflorescence is
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
A total of 20 raw milk samples were used as the fouling agent for evaluating the bacteriological effectiveness of cleaning and sanitizing of domestic milking equipment by using ozonated water at 0.5 ppm comparing to the warm water at 55! for 5 minutes respectively. The mean values of total aerobic bacteria, Coliform and E.coli that present on the plastic and stainless-steel containers after using the raw milk as fouling agent were 3.4×10-6 , 6.7x10-5 and 5.8×10-3 cfu/cm2 respectively , after cleaning the stainless steel containers by the ozonated water the mean values of total aerobic bacterial counts, Coliforms and E.coli bacteria were reduced to 1.2×10-6, 4.7×10-5 and 3.3×10-3 CFU/cm2 respectively. while after cleaning by the warm wa
... Show More