Preferred Language
Articles
/
bsj-5110
Schultz and Modified Schultz Polynomials for Edge – Identification Chain and Ring – for Square Graphs

In a connected graph , the distance function between each pair of two vertices from a set vertex  is the shortest distance between them and the vertex degree  denoted by  is the number of edges which are incident to the vertex  The Schultz and modified Schultz polynomials of  are have defined as:

 respectively, where the summations are taken over all unordered pairs of distinct vertices in  and  is the distance between  and  in  The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Fractally Generated Microstrip Bandpass Filter Designs Based on Dual-Mode Square Ring Resonator for Wireless Communication Systems

A novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Further Results on (a, d) -total Edge Irregularity Strength of Graphs

Consider a simple graph   on vertices and edges together with a total  labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say  defined by  for all  where  Also, the value  is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by  and is the least  for which G admits   edge irregular h-labeling.  In this article,   for some common graph families are examined. In addition, an open problem is solved affirmatively.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
Sum Ideal Graphs Associated to a Given Ideal of a Commutative Ring

The aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let â„› be a commutative ring with identity, and I(â„›) be the set of all non-trivial ideals of â„› with S I(â„›). The sum ideal graph associated to S, denoted by       Î¨(â„›, S), is the undirected graph with vertex set {A I(â„›): S⊂A+B, for some B I(â„›)} where two ideal vertices A and B are adjacent if and only if A B and S⊂A+B. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
A nonlinear edge –preserving smoothing filter for edge detection on color and gray satellite images

A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.

Crossref
View Publication Preview PDF
Publication Date
Tue Jan 25 2022
Journal Name
Iraqi Journal Of Science
A Modified Segmentation Approach for Real World Images Based on Edge Density Associated with Image Contrast Stretching

Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Scopus (7)
Crossref (6)
Scopus Crossref
View Publication