Preferred Language
Articles
/
bsj-5110
Schultz and Modified Schultz Polynomials for Edge – Identification Chain and Ring – for Square Graphs
...Show More Authors

In a connected graph , the distance function between each pair of two vertices from a set vertex  is the shortest distance between them and the vertex degree  denoted by  is the number of edges which are incident to the vertex  The Schultz and modified Schultz polynomials of  are have defined as:

 respectively, where the summations are taken over all unordered pairs of distinct vertices in  and  is the distance between  and  in  The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 19 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cryptography by Using"Hosoya"Polynomials for"Graphs Groups of Integer Modulen and"Dihedral Groups with'Immersion"Property
...Show More Authors

      In this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as  graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.

View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
Wavelet Analysis For Sunspot Time Series
...Show More Authors

Abstract

In this research we study the wavelet characteristics for the important time series known as Sunspot, on the aim of verifying the periodogram that other researchers had reached by the spectral transform, and noticing the variation in the period length on one side and the shifting on another.

A continuous wavelet analysis is done for this series and the periodogram in it is marked primarily. for more accuracy, the series is partitioned to its the approximate and the details components to five levels, filtering these components by using fixed threshold on one time and independent threshold on another, finding the noise series which represents the difference between

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Stability of Complement Degree Polynomial of Graphs
...Show More Authors

     A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex.  For a simple undirected graph G with order n, and let  denotes its complement. Let δ(G), ∆(G) denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial CD[G,x]= , where C

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Odd Fibonacci edge irregular labeling for some trees obtained from subdivision and vertex identification operations
...Show More Authors

Let G be a graph with p vertices and q edges and  be an injective function, where k is a positive integer. If the induced edge labeling   defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (22)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Mon May 15 2017
Journal Name
International Journal Of Image And Data Fusion
Image edge detection operators based on orthogonal polynomials
...Show More Authors

View Publication
Scopus (32)
Crossref (10)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Topological Indices Polynomials of Domination David Derived Networks
...Show More Authors

The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
symmetric analysis of multiple variables classified ranked orthogonal polynomials
...Show More Authors

MCA has gained a reputation for being a very useful statistical method for determining the association between two or more categorical variables and their graphical description. For performance this method, we must calculate the singular vectors through (SVD). Which is an important primary tool that allows user to construct a low-dimensional space to describe the association between the variables categories. As an alternative procedure to use (SVD), we can use the (BMD) method, which involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, the (HD) is formed. The aim of study is to use alternative method of (MCA) that is appropriate with order

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Fractally Generated Microstrip Bandpass Filter Designs Based on Dual-Mode Square Ring Resonator for Wireless Communication Systems
...Show More Authors

A novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Further Results on (a, d) -total Edge Irregularity Strength of Graphs
...Show More Authors

Consider a simple graph   on vertices and edges together with a total  labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say  defined by  for all  where  Also, the value  is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by  and is the least  for which G admits   edge irregular h-labeling.  In this article,   for some common graph families are examined. In addition, an open problem is solved affirmatively.

View Publication Preview PDF
Scopus Crossref