In this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases; a circle and an ellipse, and all figures and obtained rigour measurements are checked by AutoCAD program. With its simple, symmetric form, the future predictions are tuned for the Noor's curve to be usefully engaged in important practical applications.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreThis research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show More