The m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
The polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].
A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show MoreLet R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
في هذا البحث نحاول تسليط الضوء على إحدى طرائق تقدير المعلمات الهيكلية لنماذج المعادلات الآنية الخطية والتي تزودنا بتقديرات متسقة تختلف أحيانا عن تلك التي نحصل عليها من أساليب الطرائق التقليدية الأخرى وفق الصيغة العامة لمقدرات K-CLASS. وهذه الطريقة تعرف بطريقة الإمكان الأعظم محدودة المعلومات "LIML" أو طريقة نسبة التباين الصغرى"LVR
... Show MoreBackground: The bond strength of the root canal sealers to dentin seems to be a very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate the shear bond strength of four different obturation systems using push-out test. Materials and methods: Forty straight palatal roots of the maxillary first molars teeth were used in this study, these roots were instrumented using crown down technique and ProTaper system, instrumentation were done with copious irrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilled water, roots were randomly divided into four groups according to the obturation system (ten teeth for each g
... Show MoreIn this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.
The theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show More
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show More