This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
To avoid the negative effects due to inflexibility of the domestic production inresponse to the increase in government consumption expenditure leads to more imports to meet the increase in domestic demand resulting from the increase in government consumption expenditure. Since the Iraqi economy economy yield unilateral depends on oil revenues to finance spending, and the fact government consumer spending is a progressive high flexibility the increase in overall revenues, while being a regressive flexibility is very low in the event of reduced public revenues, and therefore lead to a deficit in the current account position. And that caused the deficit for imbalance are the disruption of the
... Show MoreAbstract
Objectives: The study aims to: (1) Find out the relationship among participants’ age, body mass index (BMI), and Health Belief Model (HBM) related to colorectal examinations among graduate students. (2) Investigate the differences in Health Belief Model constructs between the groups of age, gender, marital status, and education level among graduate students.
Methodology: A descriptive correlational study design which conducted in the College of Fine Arts – University of Baghdad. A convenience sample of 80 graduate students were included in this study. The data were collected by using a self-reported questionnaire which consisted of two parts (I) socio-demographic characteristics (II) Colorectal Cancer Screening Beliefs
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
The unstable and uncertain nature of natural rubber prices makes them highly volatile and prone to outliers, which can have a significant impact on both modeling and forecasting. To tackle this issue, the author recommends a hybrid model that combines the autoregressive (AR) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. The model utilizes the Huber weighting function to ensure the forecast value of rubber prices remains sustainable even in the presence of outliers. The study aims to develop a sustainable model and forecast daily prices for a 12-day period by analyzing 2683 daily price data from Standard Malaysian Rubber Grade 20 (SMR 20) in Malaysia. The analysis incorporates two dispersion measurements (I
... Show MoreThe aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial
... Show MoreBackground: Direct measurement of intracellular magnesium using erythrocytes has been suggested as a sensitive indicator for the estimation of body magnesium store. Marked depletion in plasma and erythrocyte magnesium levels was particularly evident in diabetic patients with advanced retinopathy and poor diabetic control. While insulin has been shown to stimulate erythrocyte magnesium uptake, hyperglycemia per se suppressed intracellular magnesium in normal human red cells.
Aim of the study: To investigate the erythrocyte magnesium level in Iraqi type I and II diabetic patients, with specific emphasis on the effect of both, metabolic control and the type of antidiabetic treatments.
Methods: Sixty two diabetic patients (7 with type 
 
        