This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
ABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreThis article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show MoreThe objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreA study of non-diatom algal species composition in twelve sites from Greater Zab River path within
Erbil Province, was carried out from April 2021 to January 2022 with monthly sample collection in twelve studied sites. Among them site 4,5,6,7 and 9 are the first for algal study in this area. The 112 different species of algae belong to 33 genera, 25 families, 13 orders and 4 divisions have been identified. The predominant genera included Spirogyra and Cosmarium 17, 8 taxa respectively. 13 taxa were new recorded to Iraqi
Kurdistan algal flora and 9 of them were new recorded to Iraqi algal flora: Botryosphaerella sudetica, Muriella magna, Gloeotaenium loitlesbergianum, Apiocystis brauniana, Anabaena oscillarioides, C. distentum
Abstract
This research deals will the declared production planning operation in the general company of planting oils, which have great role in production operations management who had built mathematical model for correct non-linear programming according to discounting operation during raw materials or half-made materials purchasing operation which concentration of six main products by company but discount included just three products of raw materials, and there were six months taken from the 1st half of 2014 as a planning period has been chosen . Simulated annealing algorithm application on non-linear model which been more difficulty than possible solution when imposed restric
... Show More