Preferred Language
Articles
/
bsj-5022
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES
...Show More Authors

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution
...Show More Authors

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimations for power Spectrum in ARMA(1,1) Model Simulation Study
...Show More Authors

Simulation Study

 

Abstract :

Robust statistics Known as, Resistance to mistakes resulting of the deviation of Check hypotheses of statistical properties ( Adjacent Unbiased  , The Efficiency of data taken from a wide range of probability distributions follow a normal distribution or a mixture of other distributions with different standard deviations.

 power spectrum function lead to, President role in the analysis of Stationary random processes, organized according to time, may be discrete random variables or continuous. Measuring  its total capacity as frequency function.

Estimation methods Share with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2009
Journal Name
مجلة العلوم الاحصائية
Robust Estimator for Semiparametric Generalized Additive Model
...Show More Authors

Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.

View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Investigation of Pomegranate Peel and Grape Seed Powder Additives on the Rheological and Filtration Properties of Un-Weighted WBM
...Show More Authors

   The chemical additives used to enhance the properties of drilling mud cause damage to humans and the environment. Therefore, it is necessary to search for alternative additives to add them to the drilling mud. Thus, this study investigates the effects of pomegranate peel and grape seed powders as natural waste when added to un-weighted water-based mud. The test includes measurements of the rheological properties and filtration, as well as the alkanity and density of the drilling mud. The results showed a decrease in PH values ​​with an increase in the concentrations of pomegranate peel or grapeseed, and a decrease in mud density with an increase in powders of pomegranate peel and grape seed concentrations that resulted f

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Demonstration of the value of diffusion weighted MR imaging for differentiation of benign from malignant breast lesions
...Show More Authors

Background: Radiologic evaluation of breast lesions is being achieved through several imaging modalities. Mammography has an established role in breast cancer screening and diagnosis. Still however, it shows some limitations particulary in dense breast.

Methods : Magnetic resonance imaging is an attractive tool for the diagnosis of breast tumors1 and the use of magnetic resonance imaging of the breast is rapidly increasing as this technique becomes more widely available.1 As an adjunct to mammography and ultrasound, MRI can be a valuable addition to the work-up of a breast abnormality. MRI has the advantages of providing a three-dimensional view of the breast, performing wit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Selection of the initial value of the time series generating the first-order self-regression model in simulation modeAnd their impact on the accuracy of the model
...Show More Authors

In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method  and the least squares method and that using the method of simulation model  first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.

                  

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of The College Of Education For Women
A New Vision in the Locality and the Factors of Forming Meander
...Show More Authors

The research addressed an analytical field investigation of the locality of meander, the factors responsible of the locality of the meander at certain points of the stream other than others, and the role sequence of these factors in the formation process.
The research revealed that the location of forming the meander was associated closely with the scale structural composition of the bank materials from which the first stage of forming the curved stream, for the inhomogeneous or non-identical opposite banks in their scale structural composition saw an activity of differential corrosion, while the homogeneous and identical opposite banks in their scale structural composition saw an identical corrosion activity in its intensity at both

... Show More
View Publication Preview PDF