Facial recognition has been an active field of imaging science. With the recent progresses in computer vision development, it is extensively applied in various areas, especially in law enforcement and security. Human face is a viable biometric that could be effectively used in both identification and verification. Thus far, regardless of a facial model and relevant metrics employed, its main shortcoming is that it requires a facial image, against which comparison is made. Therefore, closed circuit televisions and a facial database are always needed in an operational system. For the last few decades, unfortunately, we have experienced an emergence of asymmetric warfare, where acts of terrorism are often committed in secluded area with no camera installed and possibly by persons whose photos have never been kept in any official database prior to the event. During subsequent investigations, the authorities thus had to rely on traumatized and frustrated witnesses, whose testimonial accounts regarding suspect’s appearance are dubious and often misleading. To address this issue, this paper presents an application of a statistical appearance model of human face in assisting suspect identification based on witness’s visual recollection. An online prototype system was implemented to demonstrate its core functionalities. Both visual and numerical assessments reported herein evidentially indicated potential benefits of the system for the intended purpose.
The Geological modeling has been constructed by using Petrel E&P software to incorporate data, for improved Three-dimensional models of porosity model, water saturation, permeability estimated from core data, well log interpretation, and fault analysis modeling.
Three-dimensional geological models attributed with physical properties constructed from primary geological data. The reservoir contains a huge hydrocarbon accumulation, a unique geological model characterization with faults, high heterogeneity, and a very complex field in nature.
The results of this study show that the Three-dimensional geological model of Khasib reservoir, to build the reservoir model starting with evaluation of reservoir to interpretation o
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe Cenomanian – Turronian sedimentary succession in the south Iraq oil fields, including Ahmadi, Rumaila, Mishrif and Khasib formations have undergone into high-resolution reservoir-scale genetic sequence stratigraphic analysis. Some oil-wells from Majnoon and West-Qurna oil fields were selected as a representative case for the regional sequence stratigraphic analysis. The south Iraqi Albian – Cenomanian – Turronian succession of 2nd-order depositional super-sequence has been analyzed based on the Arabian Plate chronosequence stratigraphic context, properly distinguished by three main chrono-markers (The maximum flooding surface, MFS-K100 of the upper shale member of Nahr Umr Formation, MFS-K140 of the upper Mishrif carbonate
... Show MoreBy driven the moment estimator of ARMA (1, 1) and by using the simulation some important notice are founded, From the more notice conclusions that the relation between the sign and moment estimator for ARMA (1, 1) model that is: when the sign is positive means the root gives invertible model and when the sign is negative means the root gives invertible model. An alternative method has been suggested for ARMA (0, 1) model can be suitable when
Obtaining the computational models for the functioning of the brain gives us a chance to understand the brain functionality thoroughly. This would help the development of better treatments for neurological illnesses and disorders. We created a cortical model using Python language using the Brian simulator. The Brian simulator is specialized in simulating the neuronal connections and synaptic interconnections. The dynamic connection model has multiple parameters in order to ensure an accurate simulation (Bowman, 2016). We concentrated on the connection weights and studied their effect on the interactivity and connectivity of the cortical neurons in the same cortical layer and across multiple layers. As synchronization helps us to mea
... Show MoreWastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost
... Show More