Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of the quarter that contains a tumor based on the centroid value of the cluster in this quarter, which is far from the centers of the remaining quarters. From the calculations conducted on several images' quarters, the experimental outcomes show that the centroid value of the cluster in each quarter was greater than 0.9 if this quarter did not contain a tumor while the value of the centroid value for the cluster containing a tumor was less than 0.4.For examples, in a quarter no.1 for STOMACH_1 medical image, the centroid value of the cluster was 0.973 while the value of the cluster centroid in quarter no.3 was 0.280. For this reason the tumor area was found in quarter no.(3) of the medical image STOMACH_1. Also, the centroid value of the cluster in a quarter no.2 was 0.948 for STOMACH_2 while, the value of the cluster centroid in quarter no.4 was 0.397. For this reason the tumor area was found in a quarter no.4 of the medical image STOMACH_2.
ABSTRACT
The controversy is currently revolving around industrial additives, including antioxidants, their negative effects on consumer health and the emergence of various and various diseases, which led scientists and researchers to intensify most studies on natural antioxidants and their synthesis from medicinal plants mentioned in ancient medicine and in divine books as potential antioxidants of increasing importance. Therefore, this study was designed to synthesize silver nitrate particles from plant leaf extracts (Figs, Olives, and Moringa) and study their effect on bacterial inhibition of each of the undesirable Coliform bacteria (E-Coli,
... Show MoreThe two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreOBJECTIVE: To evaluate the patient satisfaction to hospital services and identify factors that influences this satisfaction.
Background: Medical-surgical nurses are responsible of providing competent care to clients with a wide-array of acute and chronic health problems. This challenging task requires arming nurses with advanced competencies of health literacy to effectively educate their clients. However, evidence about medical-surgical nurse’s health literacy-related knowledge and experience is limited. Purposes: This study aimed to determine the level of the health literacy-related knowledge and experience among medical-surgical nurses.Design: A descriptive-cross-sectional study was conducted among a total sample of 177 nurses who were practicing in medical-surgical wards in teaching hospitals in Iraq. A convenience sampling method was used to sele
... Show MoreThe inhibitory effect of acetone, ethanol, and aqueous extracts of ten medicinal plants on β-lactamase from Staphylococcus sciuri and Klebsiella pneumoniae was investigated in vitro by starch-iodine agar plate method. The results revealed the success of starch-iodine method for the detection of the inhibition of β-lactamase activity by the various extracts of each individual plant. The acetone extracts of Catharanthus roseus, Eucalyptus camaldulensis, and Schinus terebinthifolius induced an inhibitory effect on β-lactamase from Staphylococcus sciuri. On the other hand, acetone extracts from only Eucalyptus camaldulensis, and Schinus
... Show MorePro-inflammatory cytokines play an important role in intercellular communications. In the last two decades, many cytokines have been identified in human milk. These cytokines are variable according to different conditions such as pathogenic infections which strongly stimulated the immune response. The present study aims to determine of IL1β and TNF-α in Toxoplasma gondii-free and infected women in an attempt to clarify the impacts of the infections on cytokines especially in mother's milk. The serum and milk sample were collected from 96 samples (48 for seropositive and 48 for seronegative). To confirm the Toxoplasma gondii infection; enzyme linked immunofluorescence assay (ELIFA) was used to detect anti-Toxoplasma Ig
... Show More