A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the results present that the improved median filter with crow optimization algorithm is more effective than the original median filter algorithm and some recently methods; they show that the suggested process is robust to reduce the error problem and remove noise because of a candidate of the median filter; the results will show by the minimized mean square error to equal or less than (1.38), absolute error to equal or less than (0.22) ,Structural Similarity (SSIM) to equal (0.9856) and getting PSNR more than (46 dB). Thus, the percentage of improvement in work is (25%).
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreThe process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreMany cinematic adaptations were produced for the Grimms’ “Little Snow-White” (1812) including Mirror Mirror movie (2012), the contemporary version adapted by Taresm Singh. Singh’s version was able to depict the modern reality of women and went against patriarchy by embracing feminist ideologies of the fourth-wave feminism. Therefore, he challenged the ideologies of the mainstream cinema dominated by the patriarchal élite’s capitalist mode of production that still adhere to the stereotyped patriarchal image of women’s ‘victimization,’ ‘objectification’ and ‘marginalization,’ which did not represent women’s modern reality anymore. This paper, however, is a qualitative study aimed to prove that the femini
... Show Moren this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t
... Show MoreThe image of television dominates the cognitive and artistic motivations. It is the formulation of ideas and visions along with its documentary ability. It is the main element in television work as it is a story that is narrated in pictures. Therefore, attention to image building is a major point of gravity in the work structure as a whole. On the image is the element carrying all aesthetic and expressive values of news and information directly to the hints that work to stimulate and stir the imagination of the recipient to evoke mental images added to the visual images to deepen the meanings.
All visual arts carry elements and components that follow in a particular pattern to give special meanings and specific connotations. However,
The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show More