The presence of residual antibiotics in water results in the development of antibiotics resistant genes. The available wastewater treatment systems are not capable of removing such antibiotics from sewage. Thus, antibiotics need to be removed before the discharge of wastewater. Adsorption is among the promising techniques for the wastewater treatment to aid the removal of a wide range of organic and inorganic pollutants. The present work is a contribution to the search for an economical method for the removal of low concentrations of amoxicillin (AMX) from water by adsorption on water treatment residue, WTR, taken from a local drinking water facility. The chemical composition and the adsorptive characteristics of the material were first evaluated using energy dispersive spectroscopy, EDS, and sorption of methylene blue, respectively. The porous character of the sorbent was modified by ignition. The application of the WTR for the adsorption of AMX was studied under various operating conditions including sorbent dosage, 2-20 g/L at room temperature; contact time 30-240 min.; and initial concentration range of the antibiotic, 0.00004-0.00012 M. facility. To aid the experimental work, statistical software was employed to design the experiments and evaluation of the results. Graphical and mathematical relationships have been established for the adsorption efficiency with the operating conditions. The adsorption capacity was calculated from the plot of the adsorbed drug against the sorbent content and found to be 19.966 µmol/g WTR. The sorption efficiency depends on the initial concentration and being better at low concentration (0.00004 M) and equilibrium time (within 100 mins.). The optimum conditions of the adsorption are: AMX Concentration, 0.00004 M; Contact time. The optimum conditions of the adsorption are: AMX Concentration, 0.00004 M; Contact time, 90 min., and WTR content of 15.5 g/L to give removal efficiency of 89.2%.
This study which was carried out from Jan /2010 to Jan/2011,evolution of the efficiency
of treatment unit of al-Ameen factory , a subsidiary of Vegetable Oils General Company in
al- Za
,
faraniya /Sa
,
idea district /South of Baghdad ,via examing the waters coming out of
treatment unit and the role of this unit in improving waters quality , especially in physical and
chemical characteristics to be main factors in studying water's quality, such as temperature
C°,pH,Ec,DO,BOD5,NO3,TDS,PO4
-3
.
The results showed that the characteristics of treated treated water excepte of the Ec
factor were within the acceptable limits,in spite of the high concentration entering the unit .
This confirms t
The objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
The adsorption behavior of methyl orange from aqueous solution on Iraqi bentonite was investigated. The effects of various parameters such as initial concentration of methyl orange, amount of adsorbent, ionic strength and temperature on the adsorption capacity has been studied. The percentage removal of methyl orange increased with the decrease of initial concentration of methyl orange and it increased with the increase of dose of adsorbent. The adsorbed amount of methyl orange decrease with increasing ionic strength and an increase in temperature. The equilibrium adsorption isotherms have been analysed by the linear, Langmuir and Temkin models. The Langmuir isotherms have the highest correlation coefficients. Thermodynamic paramet
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreAleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing the adsorption sys
... Show More