The presence of residual antibiotics in water results in the development of antibiotics resistant genes. The available wastewater treatment systems are not capable of removing such antibiotics from sewage. Thus, antibiotics need to be removed before the discharge of wastewater. Adsorption is among the promising techniques for the wastewater treatment to aid the removal of a wide range of organic and inorganic pollutants. The present work is a contribution to the search for an economical method for the removal of low concentrations of amoxicillin (AMX) from water by adsorption on water treatment residue, WTR, taken from a local drinking water facility. The chemical composition and the adsorptive characteristics of the material were first evaluated using energy dispersive spectroscopy, EDS, and sorption of methylene blue, respectively. The porous character of the sorbent was modified by ignition. The application of the WTR for the adsorption of AMX was studied under various operating conditions including sorbent dosage, 2-20 g/L at room temperature; contact time 30-240 min.; and initial concentration range of the antibiotic, 0.00004-0.00012 M. facility. To aid the experimental work, statistical software was employed to design the experiments and evaluation of the results. Graphical and mathematical relationships have been established for the adsorption efficiency with the operating conditions. The adsorption capacity was calculated from the plot of the adsorbed drug against the sorbent content and found to be 19.966 µmol/g WTR. The sorption efficiency depends on the initial concentration and being better at low concentration (0.00004 M) and equilibrium time (within 100 mins.). The optimum conditions of the adsorption are: AMX Concentration, 0.00004 M; Contact time. The optimum conditions of the adsorption are: AMX Concentration, 0.00004 M; Contact time, 90 min., and WTR content of 15.5 g/L to give removal efficiency of 89.2%.
In this study, Yogurt was dried and milled, then shaked with distilled water to remove the soluble materials, then again dried and milled. Batch experiments were carried out to remove hexavalent chromium from aqueous solutions. Different parameters were optimized such as amount of adsorbent, treatment time, pH and concentration of adsorbate. The concentrations of Cr6+ in solutions are determined by UV-Visible spectrophotometer. Maximum percentage removal of Cr6+ was 82% at pH 2. Two equilibrium adsorption isotherms mechanisms are tested Langmuir and Freundlich, the results showed that the isotherm obeyed to Freundlich isotherm. Kinetic models were applied to the adsorption of Cr6+ ions on the adsorbents, ps
... Show MoreIraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal percent we
... Show MoreIraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal perce
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreAleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing the adsorption sys
... Show MoreThe alteration in the hydrological regime in Iraq and the anthropogenic increasing effect on water quality of a lotic ecosystems needs to continuous monitoring. This work is done to assess the water quality of Tigris River within Baghdad City. Five sites were selected along the river and ten physicochemical parameters and Overall Index of Pollution (OIP) were applied to assess the water quality for the period between November 2020 and May 2021, the studied period were divided into dry and wet seasons. These parameters were water temperature, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total hardness, alkalinity, turbidity, total phosphorus, total nitrogen, electrical co
The injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with differen
... Show MoreThe degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
