Preferred Language
Articles
/
chb6HocBVTCNdQwC0DjH
A Numerical Study of Tertiary Oil Recovery by Injection of Low-Salinity Water
...Show More Authors

The injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with different concentrations and the period of injection. The low salinity injection period varied from twenty-five years in case one and reduced five years in each case until reached to five years in final case. Higher oil recovery factor obtained in case one with injection time twenty-five years and lower recovery factor for case five with injection time of low salinity water injection five years. Lower water concentration gives higher oil recovery for all cases where this study investigated the effect of low-salinity water flooding as slug injection. From the five cases presented, field oil recovery factor (FOE), field oil production rate (FOPR), field oil production total (FOPT), field pressure (FP), and field water cut (FWCT) were observed. Oil recovery is 56.6 percent in high salinity water flooding (HSWF), and 71.8 percent in low salinity water flooding (LSWF) for 0 percent salt concentration and 62.40 percent for 20 percent salt concentration as in case one.

Crossref
View Publication
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Enhanced Oil Recovery using Smart Water Injection
...Show More Authors

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.

In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.

The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Water Injection for Oil Recovery in Mishrif Formation for Amarah Oil Field
...Show More Authors

The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Sodium Dodecyle Sulphate Injection as a Secondary Oil Recovery Method
...Show More Authors

Sodium Dodecyle Sulphate (CH3(CH2)11SO4-Na+) solution was used as a secondary oil recovery by using a lab Model shown in figure-1. The effect of (solution concentration, temperature and salinity) on interfacial tension figure-2 and figure-3 and figure-4 respectively. The best values of these three variables, were taken (those values that give the lowest interfacial tension). Porosity, saturation, permeability were determined in the lab depending on Darcy law. Primary oil recovery was displaced by water until no more oil is obtained then sodium dodecyle sulphate solution was injected. The total oil recovery was 94.8% or 85.7% of the residual oil (secondary oil recovery) figure-5. This method was applied on Iraqi oil field and it gave resu

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery
...Show More Authors

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r

... Show More
Crossref (4)
Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery
...Show More Authors

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG).

Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wel

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jul 22 2020
Journal Name
University Of Baghdad
Feasibility of Water Sink-Based Gas Flooding to Enhance Oil Recovery in North Rumaila Oil Field
...Show More Authors

Publication Date
Thu Mar 18 2021
Journal Name
Energy & Fuels
Synergistic Effect of Nanoparticles and Polymers on the Rheological Properties of Injection Fluids: Implications for Enhanced Oil Recovery
...Show More Authors

New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us

... Show More
Scopus (61)
Crossref (59)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Geological Journal
Optimizing Water-Cut and Boosting Oil Recovery: Geological Insights from Mishrif Reservoir, Buzurgan Oil Field
...Show More Authors

This study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Increasing of Oil Field Productivity by Implementation of Re-entry Horizontal Injection Well, Case study
...Show More Authors

Water flooding is one of the most important methods used in enhanced production; it was a pioneer method in use, but the development of technology within the oil industry, takes this subject toward another form in the oil production and application in oil fields with all types of oils and oil reservoirs. Now days most of the injection wells directed from the vertical to re-entry of full horizontal wells in order to get full of horizontal wells advantages.
This paper describes the potential benefits for using of re-entry horizontal injection wells as well as combination of re –entry horizontal injection and production wells. Al Qurainat productive sector was selected for study, which is one of the four main productive sectors of Sout

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
A Study Of Corrosion Inhibition Of Low Carbon Steel In Washing Water Of Crude Oil Solution In The Presence Of Folic Acid
...Show More Authors

The corrosion behavior of low carbon steel in washing water of crude oil solution has been studied potentiostatically at five temperatures in the range (30–70)°C .The corrosion potential shifted to more negative values with increasing temperature and the corrosion current density increased with increasing temperature. Folic acid had on inhibiting effect on the corrosion of low carbon steel in washing water at a concentration (5× 10-4-- 5× 10-3 ) mol/dm3 over the temperature range (30–70)°C. Values of the protection efficiency were calculated from the corrosion current density .From the general results for this study, it can be seen that thermodynamic and kinetic function were also calculated (?G, ?S, ?H and Ea )

... Show More
View Publication Preview PDF
Crossref (2)
Crossref