In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
Abstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show Morestudy the effect of radiation microwave (MW) in inhibition the growth of some types of bacteria in a minced meat and barker were exposed to MW for different times included (0, 10, 20, 30 and 40) sec.The results showed a high inhibition rate for 40 sec, reached to 100%. It is the other side studied the effect of microwave radiation against four types of bacteria included (Staphylococcus aureus, Escherichia coli, Proteus mirabilis and Klebsiella spp), when were exposed to for (0, 5, 10, 20, 30 and 40) sec the inhibition ratio reached to 100% in each of the Proteus mirabilis and Klebsiella spp at 30 sec and Staphylococcus aureus and Escherichia coli at 40sec. using MW in the sterilization media, such as Nutrient agar, Macconkey agar and Man
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThe concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
The main purpose of this paper is to study some results concerning reduced ring with another concepts as semiprime ring ,prime ring,essential ideal ,derivations and homomorphism ,we give some results a bout that.
The aim of this paper is to present a weak form of -light functions by using -open set which is -light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of -totally disconnected and inversely -totally disconnected function have been defined, some examples and facts was submitted.
Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.
The aims of this thesis are to study the topological space; we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore, we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied. On the other hand, we studied weakly/ strongly forms of ω-perfect mappings, namely -ω-perfect mappings, weakly -ω-perfect mappings and strongly-ω-perfect mappings; also, we investigate their fundamental properties. We devoted to study the relationship between weakly -ω-perfect mappings and strongly -ω-perfect mappings. As well as, some new generalizations of some definitions wh
... Show MoreThis paper contains an equivalent statements of a pre- space, where are considered subsets of with the product topology. An equivalence relation between the preclosed set and a pre- space, and a relation between a pre- space and the preclosed set with some conditions on a function are found. In addition, we have proved that the graph of is preclosed in if is a pre- space, where the equivalence relation on is open.
On the other hand, we introduce the definition of a pre-stable ( pre-stable) set by depending on the concept of a pre-neighborhood, where we get that every stable set is pre-stable. Moreover, we obtain that
... Show MoreIn this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.