Na+/K+-ATPase is a prevalent enzyme that maintains the Na+ and K+ gradients across the cell membrane by transporting three Na+ out and two K+ into the cell, the aim of this study is to provide detailed mechanistic insights, potentially with important effects on physiological regulation of active Na and K transport in tissues of Aerobic Thyroid Patient. Thyroid tissues were obtained from a 35 year old patients, the operation was carried out at the Al-Hadi Specialist Hospital in Samarra city, the sample was stored at -20ºC until used. The purification protocol included Salt Precipitation, Ion Exchange Chromatography, Gel Filtration and Electrophoresis, a spectrophotometric method was used to determine the enzyme activity. kinetic parameters was also obtained for the enzyme. Partial purification of Na+/K+-ATPase revealed two isoenzymes (I ,II). The purity of separated isoenzymes were proved by SDS-PAGE electrophoresis. The kinetic characteristics of Na+/K+-ATPase showed that optimum substrate concentration about 1.5mM, Km 1.052mM, and Vmax 6.062, optimum temperature was 37 ºC, optimum pH 7.4 and optimum time in 25 min. Na+/K+-ATPase purified from Thyroid tissue has distinct kinetic characteristic that reflects the importance of intracellular regulation of specific Na+/K+-ATPase pump which gives cells the ability to precisely coordinate to their physiological requirements .
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established
Experimental densities, viscosities η, and refractive indices nD data of the ternary ethanol+ n-hexane + 3-methyl pentane system have been determined at temperatures 293.15,303.15 and 313.15 K and at atmospheric pressure then these properties were calculated theoretically by using mixing rules for densities, viscosities and refractive indices .After that the theoretical data and the experimental data were compared due to the high relative errors in viscosities an equation of viscosity was proposed to decrease the relative errors.
SYNTHESIS AND CHARACTERISATION OF NEWCo(II), Zn(II) AND Cd(II) COMPLEXES DERIVED FROM OXADIAZOLE LIGAND AND 1,10-PHENANTHROLINE AS Co-LIGAND
four coordinated complexes for divalent metal ions : Mn, Fe, Co, Ni, Cu and Cd have been synthesized using bidentate Schiff base ligand type (NN)formed by the condensation of o-phenylenediamine , p- methylbenzadehyde and furfural in methanol. The ligand was reacted with divalent metal chloride forming complexes of the types :[M(L)Cl2] where : MII=Mn, Fe, Ni, Cu, and Cd . These new compounds were characterized by elemental analysis, spectroscopic methods (FT-IR, U.V-Vis, 1HNMR (for ligand only and atomic absorption) , magnetic susceptibility, chloride content along with conductivity measurement. These studies revealed that the geometry for all complexes about central metal ion is tetrahedral.
The aim of this work covers the synthesis and characterization of the new tertra dentate ligand (H4L) containing (N and O) as donor set atoms kind (N2O2) where: H4L=Bis-1,2 (2,4dihydroxybenzylediene phylinediamine . The preparation of ligand contains reaction 2, 4 Dihydroxy benzaldehyde and o-phenylene diamine . Schiff base was reacted with some metal ions in the presence of methanol to give the complexes in the general formula [M (H2L)] where: MII = Co, Ni, Cu, Zn, Cd. All compounds were characterized by spectroscopic methods I.R , U.V.-Vis, metal content and molar conductivity measurements, showed that the complexes are non-electrolyte. The proposed geometry for all of the proposed complexes was a tetrahedral while Ni comp
... Show MoreThe ligand [Potassium (E)-(4-(((2-((1-(3-aminophenyl) ethylidene) amino)-4-oxo-1,4dihydropteridin-6-yl) methyl) amino)benzoyl)-L-glutamate] was prepared from the condensation reaction of folic acid with (3-aminoacetophenone) through Schiff reaction to give a new Schiff base ligand [H2L]. The ligand [H2L] was characterized by elemental analysis CHN, atomic absorption (A.A), (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for spectroscopes), molar conductance, and melting point. The new Schiff base ligand [H2L], reacts with Mn(II), Co(II), Ni(II), Cu(II), Cr(III) and Cd(II) metal ions and (2-aminophenol), (metal : derivative ligand : 2-aminophenol) to give a series of new mixed complexes in the general formula:- K3[M2(HL)(HA)2], (
... Show MoreIn this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
Design and synthesis of novel poly heterocycles together using same heterocyclic compound is the main task of the present paper. The target compounds entitled 4,4’-[benzene-1,4-diylbis[ethylidenehydrazine-2-ylidene]bis[4-[3,5-di(5-substitutedpyridin-2-yl)-3,3a-dihydro[1,3]thiazolo[4,5-c][1,2]oxazol-6(5H)-yl]-4H-3-yl-1,2,4-triazole-3-thiol] have been synthesized starting from the reaction of 1,4-diacetylphenyl and carbohydrazide to give Schiff base derivatives then 1,2,4- triazole derivatives from the reaction with CS2 and an excess of hydrazine hydrate. The same applies for the condensing of these newly heterocyclic amines with different pyridine-2-carbaldehydes, which resulted in the synthesis of some new Schiff bases, whic
... Show More