Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were synthesized by two methods biosynthetic technique using supernatant of Corynebacterium glutamicum that isolated from soil and green synthesis method by using plant extracts of fresh green plants.Ag NPs which synthesized by two methods were investigated visually by monitoring the color shift of reaction mixture from pale yellow to brown color, UV-Visible spectrophotometer was used to measure maximum absorbance of synthesized Ag NPs. The nanoparticles synthesized from Corynebacterium glutamicum exhibited maximum antimicrobial activity against selected pathogenic and environmental strains more than Ag NPs synthesized by green synthesis method from Spinacia oleracea, Malva parviflora and Eruca sativa. plant extracts
Since its first description as a cytotoxic agent, Olea europaea leaves extract gained significant popularity against human breast cancer, ethyl acetate extract of Olea europaea leaves obtained by acid hydrolysis method was evaluated in vitro as cytotoxic agent against new human breast cancer (AMJ13) cell line, using the MTT assay. One main pentacyclic triterpenoid; oleanolic acid, was isolated from leaves of Olea europaea by well-known two different methods, but not used for this compound before, the acidic hydrolysis method and basic acidic method. The presence of oleanolic acid was proved in both methods with qualitative and quantitative d
... Show MoreThe most hazardous class of pharmaceuticals for soil and aquatic ecosystems are antibiotics, which include prescription medications and cancer treatments. Hospital effluents are usually produced by all parts of medical facilities, including hospitals. This study's specific goal was to provide a quick, affordable, and accurate analytical technique for determining the levels of amoxicillin, azithromycin, and penicillin in wastewater from Medical City, Al-Mahmudiya, and Al-Yarmouk hospitals (Iraq, Baghdad). An HPLC with a receptive ODS C18 column was used. It was equipped with UV and pulsed amperometric detectors with wavelengths of 230 nm and 210-240 nm, respectively. The correlation coefficients for each drug are greater than 0.9999,
... Show MoreThe cement industry is considered one of the strategic industries, because it is directly related to construction work and cement is used as a hydraulic binder. However, it is a simple industry compared to major industries and depends on the availability of the necessary raw materials. This study focuses on optimizing and coordinating the location of raw materials needed for the cement manufacturing in Wasit Governorate in Iraq. Field works include detailed reconnaissance, topographic work, and description and sampling of 24 lithological sections that represent the carbonate deposits, which crop out in the area. The investigated area has the following specifications: The weighted aver
Organogel as a system was to estimate its capacity to delay and slow the drug release in the duodenum. The gelators, 12HSA (12-hydroxystearic acid), span 60. span 40 were used; the castor oil (CO) and anise oil (AO) also represented the liquid phase. To achieve the goal of this work was by using diclofenac sodium (DS). Organogels specifications were by estimating thermal attitude using tabletop rheology and differential scanning calorimetry (DSC). The organogel strength study was by applying oscillatory rheology tests the amplitude sweep and the frequency sweep. Realizing the morphology of the organogel was done utilizing an optical microscope. CO and AO binding capacity was also manifested. The transition temperatures for all organogels
... Show MoreMicrobial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate
... Show More