Thin films of pure polycarbonate (PC) with anthracene doping PC films for different doping ratios (10, 20, 30, 40, 50 and 60 ml) were prepared by using a casting method. The influence of anthracene doping ratio on photo-fries rearrangement of polycarbonate was systematic investigated. Furthermore, pure PC and anthracene doping PC films were irradiated via UV light at a wavelength (254 nm) for different periods (5, 240, 288, and 360 hrs). The photo-fries rearrangement occurring in pure PC and anthracene doping PC films were monitored using UV and FTIR spectroscopies. The photo-fries rearrangement leads to scission the carbonate linkage and formation phenylsalicylate and dihydroxybenzophenes. The result of the UV spectrum confirms disappear of polycarbonate peaks, while phenylsalicylate and dihydroxybenzophenone peaks appear at (320 nm) and (360 nm), respectively. The formation of a dihydroxybiphenyl compound reveals when the UV peak distinguishes at (340 nm). FTIR spectroscopy supported forms of phenylsalicylate and dihydroxybenzophenone compounds which appear in carbonyl region at (1689 cm-1) and (1630 cm-1), respectively. It founds that anthracene accelerates the photo-fries rearrangement of polycarbonate in the anthracene doping PC films because anthracene leads to formation of excited singlet state oxygen (1O2). Singlet oxygen (1O2) leads to the formation of a hydro peroxide, which could decompose and cause to chain scission and formation of a terminal of a carbonyl group. The presence of the carbonyl groups in the polymer makes it photo-labile, also warns that the polymer is vulnerable to deterioration.
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
In this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Abstract
The entities responsible for regulating the financial market are seeking to provide high quality accounting information, to provide appropriate protection to investors, and thus encourage them and attract them to increase their investments. the research reached several conclusion, the most prominent of which comes :-
1-The production of high quality accounting information reduces investment costs and costs of processing accounting information.
2- The production of high quality accounting information helps investors identify the best investment opportunities.
3- The results of the statistical analysis showed that there is significant
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
Thermal conductivity measurement was done for specimens of Polystyrene/ titanium dioxide, Polycarbonate/ titanium dioxide and Polymethylmetha acrylate/ titanium dioxide composites for weight ratio of 1.9/ 0.1 and 1.8/ 0.2 wt% for different thickness of the samples. The experimental results show that the thermal conductivity is increased with the increasing of thickness of layers and with the weight ratio of TiO2
Single crystals of pure and Cu+2,Fe+2 doped potassium sulfate were grown from aqueous solutions by the slow evaporation technique at room temperature. with dimension of (11x9 x4)mm3 and ( 10x 8x 5)mm3 for crystal doping with Cu &Fe respectively. The influence of doping on crystal growth and its structure revealed a change in their lattice parameters(a=7.479 Ã… ,b=10.079 Ã… ,c=5.772 Ã…)for pure and doping (a=9.687 Ã…, b=14.926 Ã… ,c= 9.125 Ã…) & (a=9.638 Ã… , b= 8.045 Ã… ,c=3.271 Ã…) for Cu & Fe respectively. Structure analysis of the grown crystals were obtained by X-Ray powder diffraction measurements. The diffraction patterns were analyzed by the Rietveld refinement method. Rietveld refinement plo
... Show More