The research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration curve was calculated used to estimate Au ions in different samples. The effectiveness of gold nanoparticles prepared according to Turkevich method was studied as antibacterial agents against E. coli bacteria. The minimum inhibition concentration of gold nanoparticles that inhibit bacterial growth was calculated using the broth dilution method, which is based on several dilutions to determine the inhibition concentration.
A new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Four new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.
The preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
A synthesis series of new heterocyclic derivatives (A2-A7) (pyrrole, pyridazine, oxazine and imidazol) derived from 4-acetyl-2,5-dichloro-1-(3,5-dinitrophenyl)-1H-pyrrole-3-carboxylate(A1) have been synthesised. Synthesis of compound (A2) by the reaction of starting material (A1) with hydroxyl amine hydrochloride in the presence of pyridine. Compound (A2) was reacted with hydrazine hydrate in dry benzene to give (A3) derivative. The compound )A3( deals with sodium nitrite to give diazonium salt, and the reaction diazonium salt with ethyl acetoacetate to produce compound (A4). To a mixture of compound (A4) and hydroxyl amine with sttired to yield (A5).Compound (A6) was prepared by reaction compound (A4) with thiosemicarbazide in presence
... Show MoreIn this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreIntroduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MoreSnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.