Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
The research aims to know the impact of science, technology, engineering, and mathematics education on both creative thinking and mathematical achievement. To achieve it, the two researchers followed the quasi-experimental approach with an experimental design for two groups, one experimental and the other a control. The research sample consisted of (32) female students from the fourth scientific grade in Al-Intisar Preparatory School for Girls/ AlRasafa, First Directorate. The sample was chosen intentionally and was divided into two groups: a control group studying by the traditional method, their number (16), and an experimental group that applied the STEM approach, their number also (16). There was parity between the two research groups i
... Show MoreMilling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness. Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is v
... Show More