Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreListeria spp. is one of the abortion causative agents in animals, especially in ruminants. This work aimed to detect Listeria spp. in milk and aborted fetus cows in Iraq. A total of 50 organ samples from aborted cow fetuses, including (brain, liver, and spleen), and 50 milk samples from the same aborted cows were collected from Baghdad farms, Iraq from (October 2023- March 2024). The bacteria were identified by conventional culture methods, biochemical tests, and the VITEK2 compact system, followed by molecular confirmation. The antimicrobial resistance pattern assay was performed using the disc diffusion method against eight antibiotic agents, and the L.monocytogenes virulence genes involving prfA,actA, and hylA genes were detected using t
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreThe study aimed to identify the news framing on the Israeli Arabic-speaking i24 channel of the Israeli aggression on Gaza -2021 by analyzing the channel’s Program “this evening”. The study used the media survey method, and in its framework, it relied on the content analysis method for the program’s episodes from May 5, 2021 AD until June 4, 2021 AD, with 22 episodes. The study showed the program’s interest in launching the Palestinian resistance’s rockets significantly, followed by the Israeli military operations, and the program’s reliance on correspondents largely as a source of news material related to the aggression. It also proved that a news report and a reporter's report was the most important form of presenting news
... Show MoreA crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanopa
... Show More
The research aims to measure, assess and evaluate the efficiency of the directorates of Anbar Municipalities by using the Data Envelopment Analysis method (DEA). This is because the municipality sector is consider an important sector and has a direct contact with the citizen’s life. Provides essential services to citizens. The researcher used a case study method, and the sources of information collection based on data were monthly reports, the research population is represented by the Directorate of Anbar Municipalities, and the research sample consists of 7 municipalities which are different in terms of category and size of different types. The most important conclusion reached by the research i
... Show MoreIn this work a study and calculation of the normal approach between two bodies,
spherical and rough flat surface, had been conducted by the aid of image processing
technique. Four kinds of metals of different work hardening index had been used as a
surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests. A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreIn this work a study and calculation of the normal approach between two bodies, spherical and rough flat surface, had been conducted by the aid of image processing technique. Four kinds of metals of different work hardening index had been used as a surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests.
A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights, centre lin