Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
The present study was performed to evaluate the level of some risk factors (biochemical and immunological) in hypothyroid Iraqi patients considering the different thyroid functional states (hypothyroidism and subclinical hypothyroidism).The study includes 82 patients clinically diagnosed with hypothyroidism. Three study groups have been investigated: (47 clinical hypothyroid patients, 12 subclinical hypothyroid patients 23 healthy individuals) of different ages. This study, show that the proportion of females (83.3 %), (87.2%) in subclinical and clinical hypothyroidisim respectively higher than the proportion of males (16.7%),(12.8%) in subclinical and clinical hypothyrodism respectively of the total patients.The majority of subclinical hyp
... Show MoreThe target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreTriticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer wa
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreSince the introduction of the HTTP/3, research has focused on evaluating its influences on the existing adaptive streaming over HTTP (HAS). Among these research, due to irrelevant transport protocols, the cross-protocol unfairness between the HAS over HTTP/3 (HAS/3) and HAS over HTTP/2 (HAS/2) has caught considerable attention. It has been found that the HAS/3 clients tend to request higher bitrates than the HAS/2 clients because the transport QUIC obtains higher bandwidth for its HAS/3 clients than the TCP for its HAS/2 clients. As the problem originates from the transport layer, it is likely that the server-based unfairness solutions can help the clients overcome such a problem. Therefore, in this paper, an experimental study of the se
... Show MoreThe aim of study is to shed light on an Islamic city which is unknown for a lot of people, it can have an old history in Parisian country and many events happen with it , This city is characterized with political, military, economic scientific ,and social features, This city is called Zanjan and it is one of the most important cities because it dates back to the period of post history and it has a good geographic location whereas it was, passage for trade caravans to pass through as well its land which was specialized in agriculture and industry. the study follows chronological order of historical events for the city, one of the most significant conclusions is to think that this city does belong to artifacts and it is an old city and it
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
The seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head.
Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal.
The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple
... Show MoreA new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show More