Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
Efficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290
... Show MoreThe study aims to clarify the impact of growth in the industrial sector on economic growth in the Iraqi economics according to the methodology of Kaldor for (2017-2030) , taking into consideration the effect of the accumulation of capital in the calculation of growth rates in the economy through productivity estimate of Total Factor Productivity (TFP) to growth in the economy, which is why the study assumes a formula to comply with the laws of Kaldor growth models developed requirements. This study is the most important to find out the development of the laws of Kaldor among Arabic studies, especially the first and third, so that the relationship between the growth of industrial production and economic growth as represented
... Show MoreObjective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreIn this paper, we devoted to use circular shape sliding block, in image edge determination. The circular blocks have symmetrical properties in all directions for the mask points around the central mask point. Therefore, the introduced method is efficient to be use in detecting image edges, in all directions curved edges, and lines. The results exhibit a very good performance in detecting image edges, comparing with other edge detectors results.
Most Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin
With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
Neuroendocrine differentiation has been mentioned in many cancers of non-neuroendocrinal organs, involving the gastrointestinal tract. In contrast, the correlation of focally diffused neuroendocrine differentiation in colorectal adenocarcinoma with neuroendocrine cell hyperplasia has not been somewhat reported. The objective of this research is to study the relationship between neuroendocrine cell hyperplasia and neuroendocrine differentiation in colorectal adenocarcinoma and to find the correlation of neuroendocrine differentiation and VEGF expression with clinicopathological parameters of colorectal adenocarcinoma. Methods employed in the current study were including eighty-one patients with colorectal cancer. Formalin fixed paraffin e
... Show More