Preferred Language
Articles
/
bsj-3823
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system
...Show More Authors

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
View Publication
Scopus (17)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Control on a 2-D Wing Flutter Using an Adaptive Nonlinear Neural Controller
...Show More Authors

An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Feed Concentration on the Production of Pregelatinized Starch in a Double Drum Dryer
...Show More Authors

Double drum dryer is operated for producing pregelatinized maize starches using feed starch slurries of different
solids(7, 10 and13 g/100 g )content . Steam pressure (2,3,and 4 bar), the level of pool between the drums (4,7,and 10
cm) , and speed of drums rotation (3,4,and 6 rpm) are varied together with the feed solids content in a practical range of
values. The response of the dryer is registered by measuring several output variables, i.e. external drum temperature,
product moisture content, mass flow rate.

View Publication Preview PDF
Publication Date
Sat Dec 10 2022
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn: 2789-3219 )
Actual Benefits of Zinc for Cardiovascular Diseases: Mini Review
...Show More Authors

The leading causes of death, particularly among the elderly, are cardiovascular illnesses, which are frequently linked to altered lifestyle patterns. Numerous academic studies on health and disease have stressed the role of micronutrients like zinc. Furthermore, both healthy and unwell patients are increasingly consuming dietary supplements that contain micronutrients for wellbeing. Cardiovascular disease can be brought on by trace element deficiencies, particularly zinc insufficiency. This study's goal is to analyze current theories regarding the benefits of zinc supplementation for people with cardiovascular problems. We used reliable websites like Google Scholar, PubMed, and Research Gate to find the most recent papers. Preprints

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Delivery Route Management based on Dijkstra Algorithm
...Show More Authors

For businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jun 26 2020
Journal Name
Clinical And Experimental Dental Research
The oral health and periodontal diseases awareness and knowledge in the Iraqi population: Online‐based survey
...Show More Authors
Abstract<sec><title>Objectives

This study aimed to evaluate oral health (OH) and periodontal diseases (PD) awareness in the Iraqi population.

Material and methods

This study was a questionnaire‐based online survey of two weeks duration. The questionnaire was built using a Google platform and was distributed randomly via social media (Facebook and Telegram). The questionnaire consisted of a demographic data section and two other main sections for the evaluation of OH and PD awareness. Each response was marked with “1” for a positive answer and “0” for the other answers. For each respondent, answers were summed to give

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (14)
Scopus Clarivate Crossref