Solar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infrared (FTIR) spectrophotometer was employed to test the samples. Thermal analysis of thin films, including melting point (Tm), onset degree, endset degree, and crystallinity% were tested by differential scanning calorimeter (DSC). Three dimensional morphologies of thin films were inspected by atomic force microscopy (ATM). Contact angle also was tested as an index to hydrophilicity. Results proved that the ultraviolet and FTIR absorption increase after adding the natural pigment to PVA thin film, as well as it increases with increasing concentration of natural pigment. DSC analysis revealed an increase of PVA melting point when adding 15% concentration and it decreases with a 50% concentration of pigment. AFM results show an increase in surface roughness, hence the surface bearing index of PVA thin films is inversely proportional to pigment concentration. Contact angle decreases from 46.5° for pure PVA thin film to 44. 8°, 42. 6° and 35.2° after adding (15, 25, and 50)% concentration of natural dye respectively. Optical properties were enhanced by adding the natural dye, hence energy gap decreased from 3 eV for pure PVA to 2.3 eV for the PVA with a high concentrate dye. Dielectric constant increased with increasing concentration of dye, which leads to high polarization of solar cell.
Cadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di
... Show MoreIn this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show More
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
The (NiTsPc) thin films operating by vacuum evaporation technique are high recital and good desirable for number of applications, were dumped on glass substrates at room temperature with (200±20nm) thickness and doped with Al at different percentage (0.01,0.03) besides annealing the sample with 200˚C for 1 hours . The stimuluses of aluminum dopant percentage on characterization of the dropped (Ni Ts Pc) thin films were studied through X-ray diffraction in addition from the attained results, were all the films have polycrystalline in nature, as well the fallouts of XRD aimed at film illustrations polycrystalline, depending on the Al ratio doping, the results, SEM exposed the surface is regularly homogeneous. Utilizing first-ideolog
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
The effect of heat treatment on the optical properties of the bulk heterojunction blend nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt and Tris (8-hydroxyquinolinato) Aluminum (NiPcTs/Alq3) thin films which prepared by spin coating was described in this study. The films coated on a glass substrate with speed of 1500 rpm for 1.5 min and treated with different annealing temperature (373, 423 and 473) K. The samples characterized using UV-Vis, X ray diffraction and Fourier transform Infrared (FTIR) spectra, XRD patterns indicated the presence of amorphous and polycrystalline blend (NiPcTs/Alq3). The results of UV visible shows that the band gap increase with increasing the annealing temperature up to 373 K and decreases with
... Show More