The aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
Many problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying capacity of piled raft
... Show MoreAbstract:
Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .
power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.
<
... Show MoreAbstract
Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulatio
... Show MoreExperimental investigations have been carried out to investigate the pH-control problems of industrial electroplating wastewater treatment plants. The accurate and sensitive PID control system could treat most problem and disturbances in the normal operation of the water treatment. However, conventional treatment was replaced by proprietary treatment agent called a QUASIL which was found to be more effective for a wide range of pH.
This research deals with the frameworks and mechanisms of international press coverage of the issue of foreign interference in the formation of the Iraqi government in the Saudi newspapers Asharq Al-Awsat and Kayhan Al-Arabi Iran and how this topic was addressed in the two newspapers. The frameworks for international press coverage of external interference in the formation of the Iraqi government. ”This research is one of the descriptive research that adopted the survey method، which made it possible to use the content analysis tool to analyze
the content of the two newspapers، whose numbers are (624) from the
newspapers (Al-Sharq Al-Awsat Al-Saudi Arabia and Kayhan Al-Arabi Iran) from (1/1/2018 to 31/12/2018)، and the researc
The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show More