In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tangent of 0.035 and a dielectric constant of 4.3, the proposed MIMO antennas that had been simulated under the five different band coverage were discovered to have demonstrated a respective isolation level of about 14dB, 12dB, 21.5dB, 19dB and 20dB under a -10dB impendence bandwidth. In the measurement and fabrication outcomes that were derived from the use of the prototype MIMO in the (3.4-3.8) band of the Europe and Chinese markets, the proposed MIMO was thus found to have produced a better performance in terms of efficiency, isolation, and envelope correlation coefficient (ECC).
Half of the oil production of the worldwide is a result of the water flooding project. But the main concern of this process is mobility control of the injected fluid, because the unfavorable mobility ratio leads to fingering effect. Adding polymer to the injection water increase the water viscosity, therefore, the displacement will be more stable and have a greater sweep efficiency.
Using of polymer flooding has received more attention these days. Polymer has great potential in the Middle East region, especially in reservoir with high temperature and salinity.
The main objective of this work is to show the effect of shear rate, salinity, temperature, polymer concentration on polymer v
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreOver the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show MoreThe present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was stu
... Show MoreIn this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreCopper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreUltraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-
... Show MoreThe human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simu
The aim of advancements in technologies is to increase scientific development and get the overall human satisfaction and comfortability. One of the active research area in recent years that addresses the above mentioned issues, is the integration of radio frequency identification (RFID) technology into network-based systems. Even though, RFID is considered as a promising technology, it has some bleeding points. This paper identifies seven intertwined deficiencies, namely: remote setting, scalability, power saving, remote and concurrent tracking, reusability, automation, and continuity in work. This paper proposes the construction of a general purpose infrastructure for RFID-based applications (IRFID) to tackle these deficiencies. Finally
... Show More