Copulas are simply equivalent structures to joint distribution functions. Then, we propose modified structures that depend on classical probability space and concepts with respect to copulas. Copulas have been presented in equivalent probability measure forms to the classical forms in order to examine any possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some probabilistic constructions have been shown within independent, and conditional probability concepts. A Bay's probability relation and its properties were discussed with respect to copulas. Moreover, an extension of multivariate constructions of each probabilistic copula has been presented. Finally, we have shown some examples that explain each relation of copula in terms of probability space instead of distribution functions.
Abstract
The aim of the current research is to extract the psychometric properties of Philip Carter's tests (for mental agility) according to the classical measurement theory. To achieve these goals, the researcher took a number of scientific steps to analyze Philip Carter's tests (for mental agility) according to the classical measurement theory. The researcher translated Philip Carter's (mental agility) tests from English into Arabic and then he translated them conversely. For the purpose of statistical analysis of paragraphs of the Philip Carter tests (mental agility) to extract the psychometric properties, the tests were applied to a sample of (1000) male and female students who were selected by cluster sampl
... Show MoreThe paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
Abstract
Due to the lack of previous statistical study of the behavior of payments, specifically health insurance, which represents the largest proportion of payments in the general insurance companies in Iraq, this study was selected and applied in the Iraqi insurance company.
In order to find the convenient model representing the health insurance payments, we initially detected two probability models by using (Easy Fit) software:
First, a single Lognormal for the whole sample and the other is a Compound Weibull for the two Sub samples (small payments and large payments), and we focused on the compoun
... Show MoreIn this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.
Additionally Maximum likelihood estimation method
... Show MoreThe current research presents a study of the sculptural body in the space of the theatrical show through reviewing most of the ideas, propositions and workings presented by philosophers and directors within the space of the show, that there were various experiences of employing those spatial formations through the mediator (the space) based on sculpturing the body in achieving those formations, which contributed in building a symbolic picture of various structural connotations. That was formulated through the research chapters, which include the first chapter (the methodological framework) which consists of two sections. The first section (the duality of space formation and imaginations). The second section (sculptural body sequences in
... Show MoreThe peculiarity of worship spaces in the Islamic architecture is evident by its symbolic connotations with doctrinal connections, thus the niche has a major status in that symbolic connotation, which transformed due to the cultural interaction from a rock on the wall directed towards Mecca into an element of integrated structural entity with performative and aesthetic characteristics. The spread of the Islamic religion contributed to subjecting it to a design acculturation process, thus the problem of the research was raised by the following question: has the evolutionary tendency of acculturation been able to effect a major transformation in the niche design? The research aims at identifying the design acculturation and its translation
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show More